Informed Spectral Analysis for Under Determined Audio Source Separation

Fourer Dominique

LaBRI - Université Bordeaux I

17 Novembre 2011
Plan

Introduction

Introducing informed Spectral Analysis

Application to audio source Separation problem

Conclusion and future work
Source Separation Problem

Observation model

Instantaneous discrete sound mixture signal:

\[x[n] = \sum_{k=1}^{K} s_k[n] + r[n] \] \hspace{1cm} (1)

with \(r[n] \) is a residual noise signal.

Monaural sound mixture

- The number \(K \) of sources present in the mixture is greater than the number of observation (under determined configuration).
- No orthogonality assumption (sources may overlap in time and frequency.)
State of the Art

Purpose of presented work
Recover each \(s_k[n] \) signals from \(x[n] \) with the minimal distortion (in the less squared-error sense).

Existing Approaches for audio under determined source separation

▶ Model-based inference : estimation of source signal parameters using prior information (e.g. harmonic model, sinusoidal modelling, GMM, ...).
▶ Unsupervised learning : non-parametric approach that attempts to extract signal characteristics from data. (e.g. ICA, NMF, sparse coding)
▶ Psychoacoustically motivated methods : organization of psychoacoustic cues (e.g. CASA)
Sinusoidal Modelling

Source decomposition using the stationary model for the analysis of a local frame:

$$s_k[n] = \sum_{l=1}^{L} a_l \cos(\omega_l n + \phi_l)$$ \hspace{1cm} (2)

where \((a, \omega, \phi) \in \mathbb{R}^3\) denotes respectively the amplitude, frequency and phase.

Why sinusoidal modelling?

- Sparse representation of musical signal (efficient for low bit rate coding MPEG4-SSC/HILN),
- \(a\) and \(\omega\) are perceptual parameters,
- allows efficient sound transformation. (e.g. time-stretching, transposition)
Sinusoidal Modelling

Parameters estimation

- Generalized derivative method for non-stationary model [Marchand & Depalle 2008]

\[
\hat{\omega}(t, \omega_k) = \omega_k - \mathcal{H}\left(\frac{S_w'(t, \omega_k)}{S_w(t, \omega_k)}\right) - \Delta\omega
\]

\[
\hat{a}(t, \omega_k) = \left| \frac{S_w(t, \omega_k)}{W(\Delta\omega)} \right| \quad \hat{\phi} = \angle \left(\frac{S_w[t, \omega_k]}{W(\Delta\omega)} \right)
\]

- \(S_w\) is the STFT of \(s\) using window \(w\)

- \(w' = \frac{\partial w(t)}{\partial t}\) and \(W = \mathcal{F}(w)\)
Sinusoidal Modelling : Theoretical bounds

Fig. Frequency estimation
Sinusoidal Modelling: Theoretical bounds

Fig. Amplitude estimation
Sinusoidal Modelling: Theoretical bounds

FIG. Phase estimation
Introducing informed Spectral Analysis

Plan

Introduction

Introducing informed Spectral Analysis

Application to audio source Separation problem

Conclusion and future work
Introducing informed Spectral Analysis

Informed Source Separation

Why?

- Classic estimators have theoretical limitations (CRB),
- high-quality is required by demanding applications,
- the original separated audio sources signals are available during the mixing process (recording studio).

Motivation

- Derive new informed-estimators that combine classic estimation with extra-information,
- optimize the rate-distortion ratio of these estimators,
- hide extra-information into the signal itself (Watermarking)*.
Approach comparison

Classic estimation

\[x[n] \xrightarrow{\text{Estimator}} \hat{s}_k[n] \]

Informed estimation

\[x[n] \xrightarrow{\text{Watermarking}} x^W[n] \]
\[s_k[n] \xrightarrow{\text{Info Extract}} I \]
\[x^W[n], I \xrightarrow{\text{Decoder}} \tilde{s}_k[n] \]
\[x^W[n], I \xrightarrow{\text{Estimator}} \tilde{s}_k[n] \]
Informed Source Separation

State of the art
Classic source separation combined with side extra information:
- Spectral envelope + clustering + Spatial filtering [Gorlow, Marchand 2011],
- magnitude spectrogram compression + Wiener filtering + [Liuktus & al. 2011],
- spectral envelope + Wiener filtering [Parvaix, Girin 2009],

Estimate \(\tilde{s}_k \) without prior knowledge about signal model or parameters.
Model based informed analysis

Motivation

- find the minimal amount of extra-information necessary to reach a fixed target precision from any classic estimator,
- allow a bit-per-bit scalable quality control,
- generalize the informed-analysis approach to allow a theoretical study.

Intuition

A classic estimator can be combined with the minimal complementary information required to systematically correct errors and reach a target quality.
Observation

Experimentation

Histogram of the Most Significant Bit (fixed point binary representation) of the estimation error committed with the reassignment method for frequency estimation of a sinusoid combined with a white noise.

SNR = −8 dB

SNR = 10 dB
Introducing informed Spectral Analysis

Informed spectral analysis principle

Scalar case

- Let be $p \in [0, 1)$ a real parameter and \hat{p} its estimation (obtained by a classic spectral analysis).
- Let be C_d the d-length fixed point binary coding application and $D = C^{-1}$. Let $C = C_1, C_2, \ldots, C_d$ denote $C_d(p)$.
- Let be $l_\sigma = \text{msb}(C(|p - \hat{p}|))$ for a significant number of occurrences over \hat{p}. (l_σ is the upper bound of the CI of the estimator).

$$C_d(p) = \underbrace{C_1, C_2, \ldots, C_{l_\sigma - 1}}_{\text{reliable part}}, \underbrace{C_{l_\sigma}, \ldots, C_d}_{\text{unreliable part}} \ . \ (3)$$
Introducing informed Spectral Analysis

How to correct errors? 1/2

Proposal of solution

Substitution of the unreliable part of $C(\hat{p})$ with the exact bit values extracted from $C(p)$

$p : 0.4032$
$C(p) : 0110$

$\hat{p} : 0.3831$ ($|\epsilon| = 0.0201$)
$C(\hat{p}) : 0110001000010$

$\tilde{p} : 0.4026$ ($|\epsilon| = 0.006$)
$C(\tilde{p}) : 0110011100010$

$|\tilde{p} - p| \leq |\hat{p} - p|$
How to correct errors 2/2

Problem: What happens when ...

\[p : 0.2776 \quad C(p) : 0 1 0 0 \quad 0 1 1 1 \quad 0 0 0 1 0 \]
\[\hat{p} : 0.2473 (|\epsilon| = 0.0303) \quad C(\hat{p}) : 0 0 1 1 \quad 1 1 1 1 \quad 0 1 0 1 0 \]
\[\tilde{p} : 0.2161 (|\epsilon| = 0.0615) \quad C(\tilde{p}) : 0 0 1 1 \quad 0 1 1 1 \quad 0 1 0 1 0 \]

\[|\tilde{p} - p| > |\hat{p} - p| \]

Substitution may increase the error.
We transmit the $l_\sigma - 1$ bit for verification.

\[p : \ 0.2776 \quad C(p) : \ 010011100010 \]
\[\hat{p} : \ 0.2473 (|\epsilon| = 0.0303) \quad C(\hat{p}) : \ 001111101010 \]

- If l_σ is exact then we have $p - 2^{-l_\sigma} \leq \hat{p} \leq p + 2^{-l_\sigma}$
- When $C(p)[l_\sigma - 1] \neq C(\hat{p})[l_\sigma - 1]$ we check 2 cases:

\[\tilde{p}^+ : \ 0.2786 (|\epsilon| = 0.0010) \quad C(\tilde{p}^+) : \ 0100011101010 \]
\[\tilde{p}^- : \ 0.1536 (|\epsilon| = 0.1240) \quad C(\tilde{p}^-) : \ 0010011101010 \]

- The best informed value verifies $\hat{p} - 2^{-l_\sigma} \leq \tilde{p} \leq \hat{p} + 2^{-l_\sigma}$
Results

Fig. Comparison with CRB for frequency estimation with $d = 16$
Introducing informed Spectral Analysis

Results

Fig.: Comparison with CRB for frequency estimation with $d = 24$
Introducing informed Spectral Analysis

Generalization to $P \in \mathbb{R}^3$ for sinusoidal model

- Parameter is a vector of \mathbb{R}^3: $P = (a, \omega, \phi)$
- Coding application: $C_d(P) = C_e(a), C_f(\omega), C_g(\phi)$ with $d = e + f + g$

Distortion measure
Weighted squared error between synthesized signals.

$$D(P, \hat{P}) = \sum_{n=1}^{N} w[n] \left| a \cos(\omega n + \phi) - \hat{a} \cos(\hat{\omega} n + \hat{\phi}) \right|^2$$ \hspace{1cm} (4)
Vector quantization problem

How to:

- find the minimal d for a given distortion measure,
- find e, f, and g that minimize $\mathcal{D}(P, \hat{P})$ (bit allocation),
- taking advantage of dependence between parameters (e.g. It is useless to allocate bit to ω and ϕ if $a \approx 0$).

Solution

Entropy Constrained Unrestricted Spherical Quantization (ECUSQ) [Korten, Jeusen & Heusdens 2007] :

- Define distortion as a function of entropy H_t,
- define a variable-length quantizer that minimize $\mathcal{D}(H_t)$,
ECUSQ

Using high-rate assumption, \(D \) can be expressed as a function of error over each component:

\[
D(\tilde{a}, \Delta a, \Delta \omega, \Delta \phi) \approx \frac{||w||^2}{24} \left(\Delta a^2 + \tilde{a}^2 (\Delta \phi^2 + \sigma_w^2 \Delta \omega^2) \right)
\]

Let be \(f_{A,\Omega,\Phi}(a, \omega, \phi) \) the joint probability density of P and \(g \) the quantizer point density. Thus we can express overall average distortion:

\[
\bar{D} = \frac{||w||^2}{24} \int \int \int f_{A,\Omega,\Phi}(a, \omega, \phi) \left(g_A^{-2}(a, \omega, \phi) \right. \\
+ \left. \tilde{a} \left(g_{\phi}^{-2}(a, \omega, \phi) + \sigma_w^2 g_{\Omega}^{-2}(a, \omega, \phi) \right) \right) \text{dad} \omega \text{d}\phi
\]

with \(\sigma_w = \frac{1}{||w||^2} \sum_{n=0}^{N-1} w[n]^2 n^2 \)
Finally we have to minimize using entropy constraint using Lagrangian multiplier:

\[\nu = \bar{D} + \lambda h(A, \Omega, \Phi) \] (5)

We obtain:

\[g_A(a, \omega, \phi) = \sqrt{\frac{|w|^2}{12\lambda \log_2(e)}} \]

\[g_{\Phi}(\tilde{a}, \omega, \phi) = \tilde{a}g_A(a, \omega, \phi) \]

\[g_{\Omega}(\tilde{a}, \omega, \phi) = \tilde{a}\sigma_w g_A(a, \omega, \phi) \]

with \(\lambda = \frac{|w|^2 \exp\left(\log(2)\left(-\frac{2}{3}(H_t) - 2b(A) - \log 2(\sigma_w)\right)\right)}{12 \log_2(e)} \)
Introducing informed Spectral Analysis

ECUSQ

Distortion Rate Function
Average distortion as a function of the entropy (with high-rate assumption):

\[D_{ECUSQ} = \frac{\|w\|^2}{8} 2^{-(2/3)(H_t - h(A,\Omega,\Phi)) - 2b(A) - \log_2(\sigma_w)} \] (6)

with \(b(A) = \int f_A(a) \log_2(a) da \)
Introducing informed Spectral Analysis

ECUSQ

Quantizer point density functions

\[g_A(a, \omega, \phi) = 2^{(1/3)\tilde{H}_t - 2b(A) - \log_2(\sigma_w)}, \]
\[g_\phi(\tilde{a}, \omega, \phi) = \tilde{a}g_A(a, \omega, \phi), \]
\[g_\Omega(\tilde{a}, \omega, \phi) = \tilde{a}\sigma_w g_A(a, \omega, \phi), \]

Notices

- Quantization steps are given by \(\Delta = g^{-1} \),
- Optimal quantizers for \(\omega \) and \(\phi \) are linearly dependent on \(\tilde{a} \),
- the bit allocation function \(b_{a,\omega,\phi} \) is computed from \(\lceil\log_2(g)\rceil \)
Introducing informed Spectral Analysis

Simulation for $P \in \mathbb{R}^3$

$\text{SNR}^{\text{target}} = 45\,\text{dB} \Rightarrow H_t \approx 42\,\text{bits}$
Plan

Introduction

Introducing informed Spectral Analysis

Application to audio source Separation problem

Conclusion and future work
Method Overview

(a) Coder

(b) Decoder

Application to audio source Separation problem
Method summary : coder

- **input** : $s_k[n]$: isolated source signals
- **output** : $x^W[n]$: watermarked mixture

- Estimate $P_{k,l}$ from $s_k[n]$ using reassignment method.
- Compute $b_{a,\omega,\phi}$ from $P_{k,l}$ using the ECUSQ.
- Compute binary mask$[n]$
- Estimate $I_{\sigma,k,l}$ and $I_{k,l}$ from $\hat{P}_{k,l}$ using the informed spectral analysis method with simulated mixing process combined with watermark.
- Compute $x^W[n]$ using QIM-based watermarking containing mask$[n]$, $I_{\sigma,k,l}$ and $I_{k,l}$.
Method summary : decoder

input : $x^W[n] :$ watermarked mixture

output : $\tilde{s}_k[n], \tilde{P}_{k,l} :$ isolated source signals and parameters

- Recover mask[n], $I_{\sigma,k,l}$ and $I_{k,l}$ from watermark extraction from $x^W[n]$ and ECUSQ for $b_{a,\omega,\phi}$ computation.

- Estimate $\hat{P}_{k,l}$ using mask[n] and reassignment method.

- Compute $\tilde{P}_{k,l}$ with $I_{\sigma,k,l}$ and $I_{k,l}$ using the informed spectral analysis.

- Synthesize $\tilde{s}_k[n]$ from $\tilde{P}_{k,l}$.
Results with real sounds

![Graph showing the relationship between bitrate (kbits/s) and result SNR (dB) for audio source separation problem. The graph compares Informed analysis, Quantized, and Watermark capacity.]
Results with real sounds

![Graph showing the relationship between bitrate (kbits/s) and result SNR (dB) with lines for Informed analysis, Quantized, and Watermark capacity. The x-axis represents result SNR in dB ranging from 20 to 65, and the y-axis represents bitrate in kbits/s ranging from 0 to 180.]

Application to audio source Separation problem
Plan

Introduction

Introducing informed Spectral Analysis

Application to audio source Separation problem

Conclusion and future work
Happy ending

Conclusion
We have proposed a method for informed-analysis of sounds mixture using a quality constraint.

Future work
- theoretical study and comparison with Shannon Lower Bound,
- applications to other audio signal models and estimators,
- optimization of mask$[n]$ computation using prior knowledge about sound structure.