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Abstract
This paper addresses the problem of emotion recognition from
a speech signal. Thus, we investigate a data augmentation tech-
nique based on circular shift of the input time-frequency repre-
sentation which significantly enhances the emotion prediction
results using a deep convolutional neural network method. Af-
ter an investigation of the best combination of the method pa-
rameters, we comparatively assess several neural network ar-
chitectures (Alexnet, Resnet and Inception) using our approach
applied on two publicly available datasets: eNTERFACE05 and
EMO-DB. Our results reveal an improvement of the prediction
accuracy in comparison to a more complicated technique of the
state of the art based on Discriminant Temporal Pyramid Match-
ing (DCNN-DTPM).
Index Terms: Speech Emotion Recognition (SER), Deep Con-
volutional Neural Networks, Time-frequency, Random Circular
Shift (RCS)

1. Introduction
Speech is one of the most used medium for human com-

munication. It conveys not only semantic and linguistic infor-
mation but also more subtle para-linguistic information such as
emotions which play a major role for a better understanding
of a natural interaction. Speech Emotion Recognition (SER)
gained interest during the last three decades [1] since it can find
a large number of applications for robots [2], human-machine
interfaces [3] or transcription systems which aim at recogniz-
ing the emotional state of a speaker from recorded utterances.
From a computational point of view, SER can be addressed as a
a continuous state activation problem [4] or a category predic-
tion problem as considered in the present work.

Classical methods for SER involve two steps which are re-
spectively the feature extraction and the classification [5]. Tra-
ditional techniques also include a preprocessing step for en-
hancing the speech signal of interest and for computing a suit-
able signal representation (e.g. time-frequency representation)
which is used for computing relevant signal features [6, 7].
Recently, deep learning methods propose to address simulta-
neously both the feature extraction and the classification steps
through a unique neural architecture. Deep learning techniques
for SER have several advantages over traditional methods such
as detecting the complex structure and features without the need
for manual parameter estimation and tuning. They tend to ex-
tract low-level features from the given raw data. Commonly
used neural architectures for SER are Long-Short Term Mem-
ory (LSTM) [8], Auto-Encoder (AE) [9], Deep Neural Network
(DNN) [10, 11], Deep Convolutional Neural Network (DCNN)

[12] and also attention mechanisms [13, 14]. Inspired by the
promising results obtained using DCNN, we aim at proposing a
simpler but efficient method achieving comparable results than
those obtained by a more complicated approach. Hence, we
investigate several DCNN architectures combined with a data
augmentation technique based on time-frequency random cir-
cular shift transformations which have been shown relevant for
improving the training of SER prediction models. Our paper is
organized as follows. We formulate the problem of SER and
describe materials in Section 2. The investigated method is pre-
sented in Section 3 and our numerical results are presented in
Section 4. Conclusion and future work direction are discussed
in Section 5.

2. Speech Emotion Recognition
2.1. Problem Formulation

The present work aims at predicting the emotion label y
from the observation of a speech signal . We consider a
discrete-time signal resulting from the sampling process at rate
Fs. The speech signal is real-valued and is denoted [n] where
n is the sample index related to the considered time instant.
SER method aims at computing the emotion label ŷ which max-
imizes the posterior probability p(y|). We consider here a su-
pervised learning scenario configuration where the probability
model is constructed from a training dataset using a neural net-
work archicture. Hence, the trained model is able to estimate
from an arbitrary input signal , its probability of belonging to
a class of emotion y. The highest probability for a given class
corresponds to the recognized emotion, implying that we are
considering a finite discrete space of emotions. Knowing the
acoustic properties of a speech signal, the analyzed frequency
range of this study is limited to 0 Hz to 10 kHz.

2.2. Materials

Our study is based on two datasets which are respectively
eNTERFACE05 [15] and EMO-DB [16]. They are freely avail-
able for the sake of reproducible research. eNTERFACE05
[15] is an audiovisual dataset recorded at a sampling rate of
Fs = 44.1 kHz by 44 speakers of different nationalities. This
dataset contains 1,293 English utterances pronounced by ac-
tors corresponding to a total of approximately 68 minutes of
speech. Each speaker is recorded for multiple sentences with 6
different emotions: anger, disgust, fear, happiness, sadness and
surprise. All emotions are globally equally represented in the
whole dataset. EMO-DB [16] is a pure-audio dataset recorded
by 10 speakers containing 535 utterances which correspond to



Figure 1: Overview of the proposed approach.

a total of 7 different emotions: anger, disgust, fear, happiness,
sadness, boredom and neutral. All the utterances are expressed
in German and recorded in an anechoic chamber at a sampling
rate of Fs = 16 kHz with a 16-bit resolution. This dataset
contains approximately a total of 25 minutes of speech.

3. Method
3.1. Global framework

The overall approach proposed in this study is depicted in
Fig. 1 and considers as the input of a deep convolutional neural
network (DCNN) a time-frequency representation and its delta
features which correspond to the first and second-order deriva-
tive with respect to time (Δ and ΔΔ) [17]. We consider for
the input, a 3D-tensor or a 3-channel image where each time-
frequency coordinate is associated to a real-valued triplet. This
enables the use of deep learning architectures designed for im-
age processing which aims at recognizing specific patterns for
addressing a classification problem. Our approach also consid-
ers a data augmentation process [18] during the training step,
which artificially increases the number of training examples by
applying signal transformations on the original ones to improve
the robustness of the trained model. To this end, our strategy
uses Random Circular Shift (RCS) transformations combined
with an additive white Gaussian noise that is detailed below.

3.2. Input of the DCNN

In this study, we investigate two distinct time-frequency
representations as the input of a DCNN which are respec-
tively the short-time Fourier transform (STFT) and the constant-
Q transform (CQT). Given a discrete-time finite-length signal
[n], with time index n ∈ {0,1, ..., N − 1}, and an analy-
sis window h, the discrete short-time Fourier transform of  is
computed as [19]:

Fh

[n,m] =

+∞
∑

k=−∞
[k]h[n − k]∗e−j

2πmk
M (1)

where j2 = −1 and z∗ is the complex conjugate of z. A real-
valued representation also called spectrogram is simply com-
puted as |Fh


[n,m] |2. The constant-Q transform (CQT) [20]

is a modified version of the STFT commonly used in musical
applications. It corresponds to a STFT where the length K of the
window h now depends on the frequency bin m > 0 such as:
Km =

Q
m where Q, also called quality factor, is constant. Delta

and delta-deltas representations are obtained from the consid-
ered time-frequency representation by computing finite differ-
ences along the time axis [17].

3.3. DCNN architectures

Our study investigates 3 well-known DCNN architectures
which are respectively Alexnet [21], Resnet-152 [22] and
Inception-v3 [23] belonging to the best state-of-the-art meth-
ods evaluated in image classification scenarios. The parameters
of the convolutional layers of each architecture were pretrained
on the Imagenet dataset1 for which the considered input is now
replaced by the 3D-tensor time-frequency representation pre-
viously described. We modified the final fully connected lay-
ers of each architecture to fit with the labels of the investigated
emotion datasets where the output is a softmax value (in range
[0,1]) corresponding to p(y|) over the set of considered
emotions and for which argmax corresponds to the estimated
emotion label ŷ.

3.4. Data augmentation strategy

Data augmentation consists in applying two transforma-
tions simultaneously on the training dataset to increase the num-
ber of examples. First, we can add a white Gaussian noise di-
rectly to the signal  in order to obtain a Signal Noise Ratio
(SNR) of 20 dB. Second, we can apply directly on the time-
frequency representation random circular shifts (RCS) along
the time axis to obtain a new training example where the pro-
nounced utterances are randomly merged. This process is ob-
tained by randomly selecting (uniform law) a time instant at
which the original image is circularly shifted as illustrated in
Fig. 2. RCS can be applied an arbitrary number of times θ that
is denoted RCS-θ such as each training example provides θ
new examples. Given a number of shifts θ, each shift is per-
formed with a random translation along time axis. The exceed-
ing part of the image is then looped back at the beginning.

(a) |Fh

|2 (b) RCS1(|Fh |

2)

Figure 2: Example of RCS applied once (θ = 1) to a 3-channel
time-frequency representation.

1https://image-net.org/



4. Numerical Results
4.1. Experimental setup

We split the audio signals of each analyzed dataset into
3-second-long segments without overlap which are considered
as individuals respectively in the considered training and test
datasets. The time-frequency representations are computed us-
ing the STFT or CQT using the Hann window to obtain a num-
ber of frequency bins M = 1023 for eNTERFACE05 and
M = 455 for EMO-DB. The hop size is adapted to fulfill the
required input size of each DCNN architecture which are dif-
ferent. In fact, the Alexnet and Resnet152 require inputs of size
(227,227,3) and Inceptionv3 needs inputs of size (300,300,3).
For the frequency axis, the number of bins corresponds to a
range of frequencies up to 9785 Hz or to 7982 Hz respectively
for eNTERFACE05 and EMO-DB that is finally cropped to ob-
tain an integer number of bins. The values of the first channel
of the considered time-frequency representation are then con-
verted to the logarithmic scale (expressed in dB) before com-
puting the second and third channel corresponding to delta and
delta-delta. The resulting values are then mapped to the [0,255]
range for each channel independently to obtain an input tensor
of dimension H × W × 3 where H and W correspond to the
height and width of the required input size of the correspond-
ing DCNN. Each considered DCNN is initialized on ImageNet
before being trained again on the considered dataset without
freezing the weight of any layer. A data augmentation of 50%
is first performed on each original dataset by the addition of
a white Gaussian noise (SNR=20dB) for which the signals are
chosen randomly. The implementation of the method is done in
python using the pytorch and torchvision libraries for which the
code is freely available for the sake of reproducible research2.
The computations are completed using Cuda and two NVIDIA
GPUs: a GeForce GTX 1080 Ti (GPU1) and a Tesla V100 PCIE
16GB (GPU2). In the remaining, we evaluate our proposed
method in two experiments. The first experiment aims at tuning
the parameters of each method in order to maximize the result-
ing accuracy. The second experiment is a comparative evalu-
ation using the best tuned method with a state-of-the-art SER
method [12] denoted DCNN-DTPM, where the experimental
conditions are identical to those reported by the authors.
4.2. First experiment: tuning

Tables 1 and 2 show the effect of different parameter
choices using our model trained with 60 epochs. We use a
Stochastic Gradient Descent (SGD) optimizer with a learning
rate of 0.001 and momentum of 0.9. We randomly split the
dataset to have 240 samples for validation and test, which corre-
sponds to all the sentences for the last 8 subjects (around 18%),
and the remaining is used as training data. Our results show
a clear advantage of STFT in comparison to CQT. We also as-
sess the ImageNet Normalization (INN) effect which consists
in normalizing the input signal through z-score (−μσ ) using the
mean μ and standard deviation σ of the ImageNet dataset. Our
results show that INN provides poorer results. A higher batch
size slightly improves the training speed for which the best re-
sults are obtained with 16. Finally, we show that RCS signif-
icantly improves accuracy for both STFT and CQT with the
tested value θ = 5. To further investigate the effect of data
augmentation, we plot in Fig. 3 the resulting accuracy of the
STFT+Alexnet method combined with RCS with a varying θ
parameter. We show that we obtain a maximum accuracy of

2https://github.com/llnanis/SER-RCS

91.25% for θ = 41 for eNTERFACE05 and an accuracy above
86.92% for θ = 19. The addition of a white Gaussian noise
does not significantly improve the accuracy in our experiments.
Table 1: Accuracy results obtained with STFT + Alexnet applied
on the eNTERFACE05 dataset.

Data aug. mini-batch size INN train. time (min) Acc. (%)
- 16 - 2 74.58
- 16 yes 2 73.33
- 32 - 2 70.41
- 32 yes 2 68.33

RCS5 16 - 7 84.17
RCS5 16 yes 7 82.91

Table 2: Accuracy results obtained with CQT + Alexnet applied
on the eNTERFACE05 dataset.

Data aug. mini-batch size INN train. time (min) Acc. (%)
- 16 - 2 66.6
- 16 yes 2 59.58
- 32 - 2 62.08
- 32 yes 2 63.33

RCS5 16 - 7 71.67
RCS5 16 yes 7 68.75

Finally we compare in Table 3 the different investigated
DCNN architectures applied on eNTERFACE05. Hence, we
show that Alexnet provides the best accuracy results (maximal
accuracy of 91.25% with RCS-41) and a better computational
complexity with a training time of about 30 minutes for RCS41
using GPU2 when Inception takes approximately more than 4
hours and Resnet more than 7 hours. Following these results,
we decide to only use the Alexnet architecture combined with
RCS with the suitable θ parameter in the remaining.

Table 3: Comparison of the 3 investigated DCNN with different
RCS applied on eNTERFACE05.

DCNN RCS Acc. (%) Train. time (min)
Alexnet

5
84.17 7 (GPU1)

Inceptionv3 85.83 60 (GPU1)
Resnet152 82.08 90 (GPU1)

Alexnet
27

90.83 34 (GPU1)
Inceptionv3 87.92 177 (GPU1)
Resnet152 86.25 300 (GPU1)
Alexnet

41
91.25 30 (GPU2)

Inceptionv3 87.92 267 (GPU2)
Resnet152 88.75 440 (GPU2)

4.3. Second experiment: comparative evaluation

We compare our proposed approach with a state-of-the-
art technique based on a DCNN architecture based on a Dis-
criminant Temporal Pyramid Matching (DTPM) strategy pro-
posed in [12]. To obtain a fair comparison, now we use the
same experimental setup as used in [12]. Hence, we evalu-
ate our model with a Leave-One-Speaker-Group-Out (LOSGO)
cross-validation strategy with five speaker for eNTERFACE05
dataset. As, the dataset contains 44 speakers, the last fold for
validation contains the last remaining 4 speakers, giving us a
total of 9 folds. A Leave-One-Speaker-Out (LOSO) strategy is
used for EMO-DB dataset. Despite the authors of [12] trained
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Figure 3: Random Circular Shift (RCS) effect on the test accu-
racy using STFT+Alexnet on eNTERFACE05(a) and EMO-DB
(b).

their model with 300 epochs, we only used 60 epochs with-
out early stopping with a mini-batch of size 30 and SGD with
a learning rate of 0.001 and momentum of 0.9. Our method
uses the STFT and RCS with a θ value which obtained the best
results according to Fig. 3. Fig. 4 shows that for the eNTER-
FACE05 dataset, we achieve to recognize each emotion bet-
ter than DCNN-DTPM, with a an average accuracy of 85.33%
which is higher than 79.25% obtained with DCNN-DTPM.
Fig. 5, shows that we obtain an average accuracy of 81.82%
on the EMO-DB dataset. We achieve better results for recog-
nizing the emotions sadness but all the other emotions are less
accurately recognized since our method seems to make a con-
fusion between happiness and fear. Thus, we obtain a slightly
lower accuracy than DCNN-DTPM which has an accuracy of
87.31%. Our detailed results expressed in terms of Recall and
F-score on each dataset are summarized in Table 4.

5. Conclusion
We have proposed and evaluated a simple but efficient

method for emotion recognition from speech signals which uses
a time-frequency representation as the input of a DCNN ar-
chitecture combined with a data augmentation technique based

(a) proposed, STFT-Alex+RCS41
(Acc. 85.33%)

(b) DCNN-DTPM [12] (Acc.
79.25%)

Figure 4: eNTERFACE05 confusion matrices obtained using
our proposed method STFT-Alexnet + RCS41 (a) and DCNN-
DTPM [12].

(a) proposed, STFT-Alex+RCS19
(Acc. 81.82%)

(b) DCNN-DTPM [12] (Acc.
87.31%)

Figure 5: EMO-DB confusion matrices obtained using our pro-
posed method STFT-Alexnet + RCS19 (a) and DCNN-DTPM
[12].

Table 4: Detailed results on eNTERFACE05 and EMO-DB us-
ing our proposed method STFT-Alexnet and RCS with the best
θ value.

dataset Accuracy (%) average recall (%) average F-score
eNTERFACE05 85.33 85.03 0.85

EMO-DB 81.82 80.18 0.80

random circular shift. Our results are mostly comparable (better
on eNTERFACE05 but poorer on EMO-DB) to those obtained
with a state-of-the-art method based on DTPM [12] that is more
complicated to implement and train. We show that RCS can sig-
nificantly improve our classification results with a reasonable
increase of the training time and could be used with other CNN-
based methods. We also compared several DCNN architecture
and shown that Alexnet remains a suitable choice when applied
to a time-frequency representation for audio classification. Fu-
ture work will address the application of our proposed method
in a real-world application scenario involving audio recordings
from the French “Humavox” MSH project [24].
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