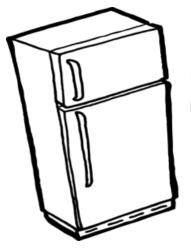


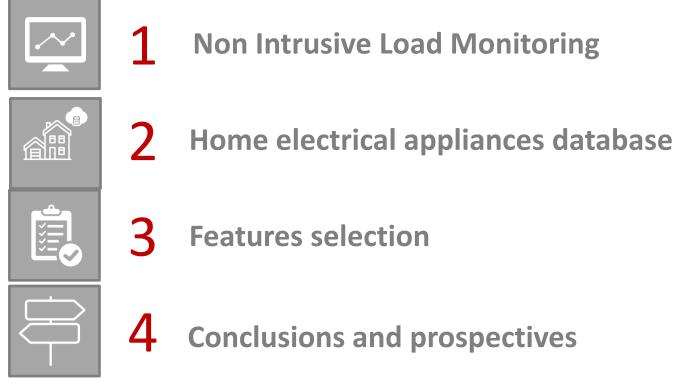
RELEVANT FEATURE SELECTION FOR HOME APPLIANCES RECOGNITION

Sarra HOUIDI, François AUGER, Houda BEN ATTIA SETHOM, Dominique FOURER, Laurence MIEGEVILLE



Sarra HOUIDI 04/07/2017

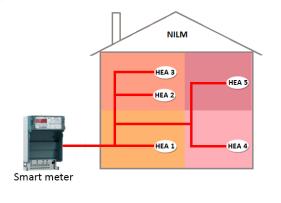
Problem statement

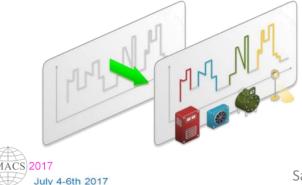

Home electrical appliances' recognition from current and voltage measurements:

- Which features to achieve this?
- Which are the most relevant?

CONTENT

Non Intrusive Load Monitoring




FI FCTR

Non-Intrusive Load Monitoring Definition

 Process to estimate the energy consumed by individual Home Electrical Appliances (HEAs)
 → with a single meter in a house electrical panel.

Purposes:

- Partition of the load curve into its major components
- Breakdown of the energy expense per HEA

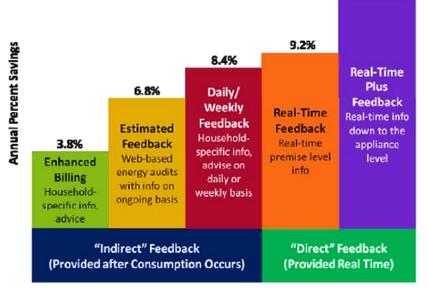
Non Intrusive Load Monitoring

Motivation and goals

• Energy Conservation: challenging issues due to population growth and HEAs' multiplication

Consumers	Utilities
 Bills' awareness Monthly budget control and understanding Identification / Reparation / Replacement of energy « hogs » 	 Customers' behavior prognosis Improve capacity planning Identification and verification of HEAs that could participate in DR

 Political Context: International directives for a better control electricity consumption through *direct feedback*



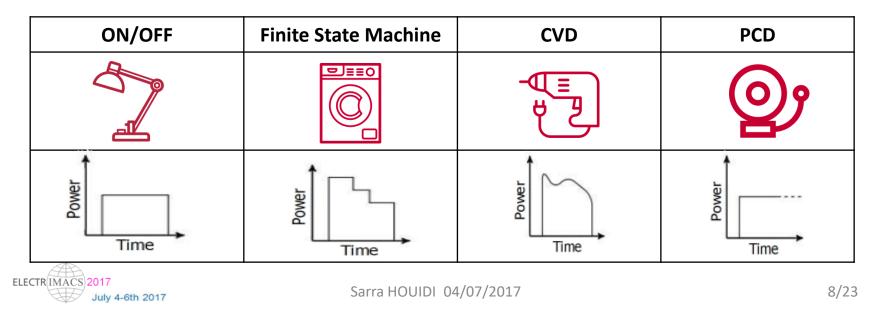
Non Intrusive Load Monitoring

Motivation and goals

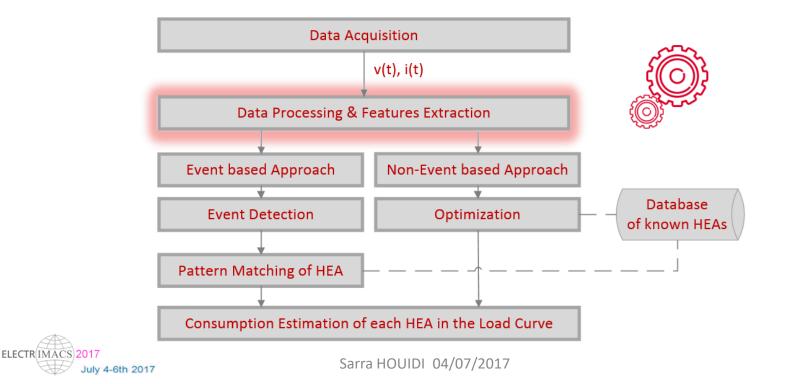
12.0%

ACEEE energy savings resulting from 36 different studies between 2000-2010

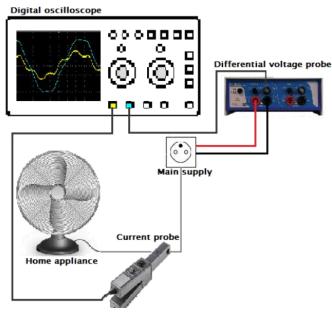
*ACEEE: American Council for an Energy Efficient Economy


Sarra HOUIDI 04/07/2017

Non Intrusive Load Monitoring Challenges


- o Different electrical behaviours: purely resistive / resistive inductive / harmonic polluting
- Multiple HEAs operation types:

Non Intrusive Load Monitoring General framework



Home Electrical Appliances Database

Setting up the HEAs Database

ELECTR IMACS 2017 July 4-6th 2017

• Acquisition of i(t) and v(t):

- in steady-state operating conditions
- 2 and 6 periods
- 59 types of HEAs
- sampling frequencies: $fs_1 = 250 \text{ kHz}$ $fs_2 = 50 \text{ kHz}$
- o Instrumentation:
 - 10 mV/A sensitivity current probe
 - 1/100 attenuation differential voltage probe
 - 8-bit resolution digital oscilloscope (RIGOL DS1104Z)

ulv 4-6th 2017

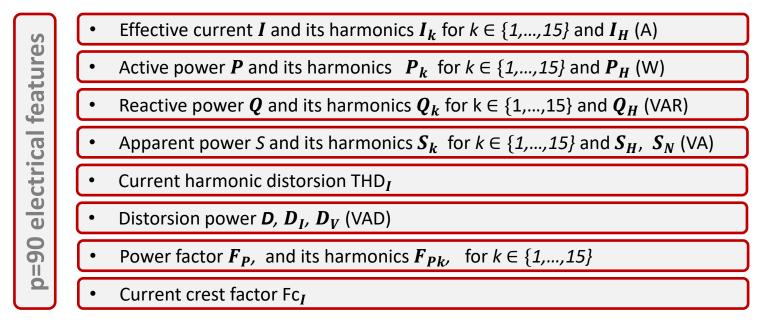
Home Electrical Appliances Database HEA Profiling

• Signature of a HEA recording *i* over one period of <u>T = 20 ms</u>

 $x_{\mathbf{i}} = \left\{ f_{i,1}(\vec{u}), f_{i,2}(\vec{u}), \dots, f_{i,j}(\vec{u}), \dots, f_{i,p}(\vec{u}) \right\}$

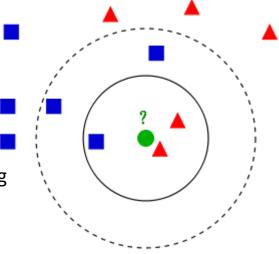
- \vec{u} : voltage and current measurements
- $f_{i,j}$: j^{th} function of \vec{v} of the ith HEA recording, where $j \in \{1, ..., p\}$ and $i \in \{1, ..., n\}$

$$X_{(n \times p)} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} f_{1,1}(\vec{u}) f_{1,2}(\vec{u}) & \dots & f_{1,j}(\vec{u}) & \dots & f_{1,p}(\vec{u}) \\ f_{2,1}(\vec{u}) f_{2,2}(\vec{u}) & \dots & f_{2,j}(\vec{u}) & \dots & f_{2,p}(\vec{u}) \\ \vdots \\ f_{i,1}(\vec{u}) f_{i,2}(\vec{u}) & \dots & f_{i,j}(\vec{u}) & \dots & f_{i,p}(\vec{u}) \\ \vdots \\ f_{n,1}(\vec{u}) f_{n,2}(\vec{u}) & \dots & f_{n,j}(\vec{u}) & \dots & f_{n,p}(\vec{u}) \end{bmatrix}$$


- X: HEAs database
- *n*: number of recordings = $59 \times 8 = 472$
- *p*: number of features = 90

Home Electric Appliances Database

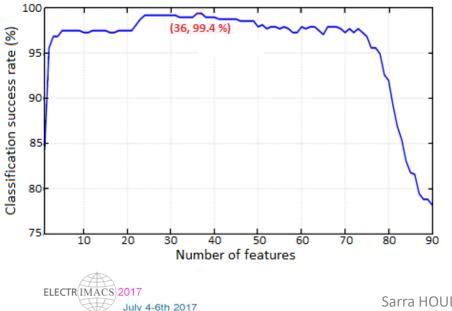
HEAs' feature extraction



Features Selection Objectives

uly 4-6th 2017

- Determination of the (d ≤ p) most informative and relevant features for a correct grouping of n_k = 8 recordings of the same HEA within classes k ∈ {1, ..., 59}
 - Dataset stored in a 472 × 90 normalized matrix \overline{X}
 - Euclidean-based K-Nearest Neighbours (K-NN) classifier
- 3 methods for selecting the most relevant subsets of features among the 90 extracted:
 - Heuristic Forward Greedy Search
 - Principal Component Analysis (PCA)
 - Inertia Ratio Maximization using Feature Space Projection (IRMFSP)



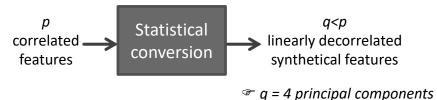
Features Selection

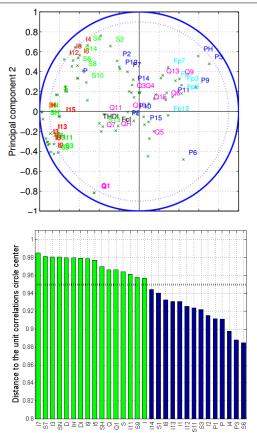
Heuristic Forward Greedy Search method

• Addition of features one at a time until the maximal classification success rate is reached

- Classification success rate= 99,4%
- for *d*= **36** features:

 $I, I_3, I_1, S, S_3, S_1, D_I, S_N, I_H, P_3, I_5, D, P_7, S_H, S_7, Q_7, P_1, S_2, P, Q_1, Q_3, I_6, S_{15}, P_9, D_V, I_7, I_2, Q, I_4, P_2, S_{10}, I_8, I_9,, Q_4, Q_H, P_4$


- High computational cost
- Different result for other K-NN metrics



Features Selection PCA method

• Principal components

- Determination of the *d* most **correlated** original features to the *q* = 4 principal components
 d = 16
- \rightarrow The closest ones to the circonference of the unit correlation circle *C*.

Features Selection IRMFSP method

- **Maximization of the features subset relevancy** for the recognition task by:
 - Selection of features that maximize the ratio *r*

$$r(j) = \frac{\sum_{k=1}^{K} n_k (\mu_{j,k} - \mu_j)^2}{\sum_{i=1}^{n} (\overline{x_{ij}} - \mu_j)^2}$$

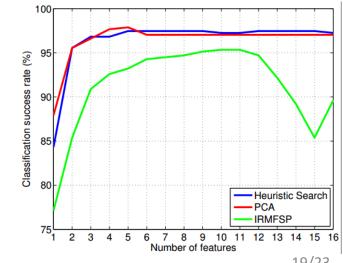
 μ_j : center of gravity of the feature $j \in \{1, ..., p\}$

 $\mu_{j,k}$: center of gravity of feature *j* for data belonging to class $k \in \{1, ..., K\}$ $\overline{x_{ij}}$: normalized value of feature *j* affected to individual $i \in \{1, ..., n\}$

• Minimization of features subset redundancy

July 4-6th 2017

by performing an iterative Gram-Schmidt orthogonalization process


Features Selection

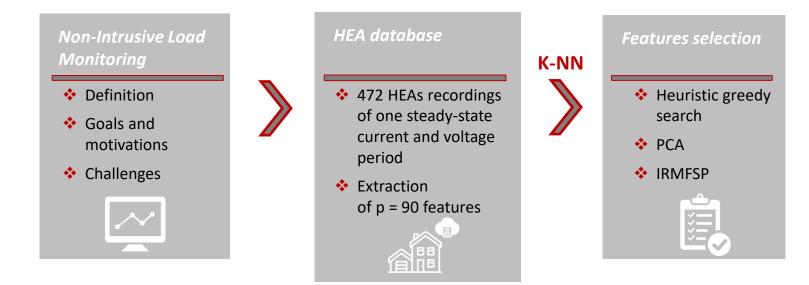
Comparison of the feature subsets

• Performance of the K-NN classifier across the home appliances dataset for different feature subsets.

	Subset size	Classification success rate
Complete feature set	90	78,2 %
Heuristic search set	36	99,4 %
PCA set	16	97,4 %
IRMFSP set	32	89,8 %
P, Q feature set	2	84,4 %

Heuristic search and PCA subsets: **exponential functions** of the number of features \rightarrow the addition of features brings **discrimination power** to the subset.

0



Conclusions

→Improvement of the performance of a designed classifier by the use of an **optimal subset of features** →Justification of the retained features in the optimal subsets by the **power supply topologies** in HEAs →Feature selection methods related to **inertia** notions

Prospectives

Examination of other feature selection methods

Validation of the performance of the retained feature subset by other types of classifiers

Recognition of simultaneously connected HEAs

HEAs' transient signals investigation

Thank you for your attention

