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Abstract—This paper introduces a novel approach for extract-
ing the elementary components present in an observed non-
stationary mixture signal. Our technique based on a pseudo-
Bayesian approach operates in the time-frequency plane and
sequentially estimates the ridge of each component that is
required for mode extraction. We compare our results with
those obtained with the state-of-the-art Brevdo method which
has shown its efficiency for disentangling multicomponent noisy
signals. Our results reveal an improvement of the reconstruction
performance when compared to the state of the art.

Index Terms—ridge extraction, time-frequency, random walk,
variational methods, robust divergence.

I. INTRODUCTION

Disentangling natural signals in audio, biomedicine, seismic
or radar applications is a challenging problem arising in a
large variety of real-world scenarios [1]. Such signals can
be modeled as a mixture of superimposed amplitude- and
frequency-modulated (AM/FM) elementary components (the
modes), which convey relevant information about the signal
content. Following this goal, time-frequency (resp. time-scale)
analysis [2] offers an elegant framework where MultiCompo-
nent Signals (MCS) are projected into a 2-dimensional plane
allowing to efficiently observe the instantaneous frequency
trajectory (the ridge) of each mode. These ridges are full
of interest for signal analysis since they enable applications
such as signal enhancement, denoising, information extraction,
and source separation [3], [4]. Several techniques previously
proposed in the literature for ridge detection and mode retrieval
follow the idea that ridges correspond to interpolated curves of
detected local maxima along the frequency axis [5], [6]. It is
shown that the ridges approximate the instantaneous frequency
(IF) of components for which the estimation quality depends
on the noise level and the presence of interfering components
[7], [8]. Such approach was investigated for example in audio
applications based on the tracking of partials [9] which aim at
predicting the trajectory of harmonic signal components made
of a fundamental frequency (F0) and its integer multiples. In
[10], Brevdo et al. proposed a mode extraction algorithm based
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on a total variation optimization approach combined with the
synchrosqueezing transform [11] allowing for mode retrieval
using a sharpened and reversible time-frequency representa-
tion. On the other hand, Flandrin introduced the Delaunay
triangulation method [12] which uses the zeros of the spectro-
gram for extracting signal components in the time-frequency
plane. Despite promising results, all these approaches suffer
from several limitations for modes reconstruction, in particular
in low Signal-to-Noise Ratio (SNR) configurations due to a
lack of robustness to noise.

In this work, we propose a novel approach for extracting the
ridge associated with the IF of a signal from its time-frequency
representation (TFR). Similarly to [13], we consider a simple
observation model and we introduce a robust approach in order
to circumvent the limitations occurring through its inaccuracy.
More precisely, a variety of robust divergence [14]–[16] is
used instead of the classical Kullback Leibler divergence
(KLD) to account for model mismatch in the presence of
noise or of several frequency components. The estimated IF
is assigned to a temporal prior model accounting for the
expected small changes between successive time instants,
providing a regularized inference process in a pseudo-Bayesian
(PB) framework. Finally, we present our algorithm where a
sequential estimation strategy is adopted to extract several
ridges independently. This paper is organized as follows. In
Section II, we present the fundamentals of time-frequency
analysis using the Short-Time Fourier Transform (STFT) for
ridge estimation and mode retrieval before introducing our
observation model. Section III presents the different similarity
measures used in the estimation process and our new proposed
estimation strategy is described in Section IV. The perfor-
mance of the proposed method is comparatively assessed in
Section V with numerical results. Conclusions and future work
are finally reported in Section VI.

II. TIME-FREQUENCY ANALYSIS RATIONALE

A. Short-Time Fourier Transform

The STFT of a signal x, using a differentiable analysis
window h, can be defined at each time instant t and each



angular frequency ω, as:

Fhx (t, ω) =

∫
R
x(u)h(t− u)∗ e−jωu du, (1)

with j2 = −1 and z∗ the complex conjugate of z. The spec-
trogram provides a TFR computed by |Fhx (t, ω)|2. Plancherel
theorem allows to rewrite Eq. (1) in the frequency domain for
a better understanding of the signal content, as:

Fhx (t, ω) =

∫
R
Fx(Ω + ω)Fh(Ω)∗ ejΩt

dΩ

2π
, (2)

with Fx(ω) =
∫
R x(t) e−jωtdt (resp. Fh) the Fourier trans-

form of signal x (resp. h). When h(t0) 6= 0, the STFT admits
a synthesis formula allowing to recover the signal x with a
delay t0 ≥ 0, as:

x(t− t0) =
1

h(t0)

∫ +∞

−∞
Fhx (t, ω) ejω(t−t0) dω

2π
, (3)

where the integration region can be reduced to the frequency
support of the signal x. In the remainder, we assume a
Gaussian analysis window h(t) = 1√

2πT
e−

t2

2T2 , with a Fourier

transform which can be expressed as Fh(ω) = e−
ω2T2

2 .

B. Ridge Estimation and Component Reconstruction

We assume that the signal x is a mixture made of K
superimposed AM-FM components expressed as:

x(t) =

K∑
k=1

xk(t) , with xk(t) = ak(t) ejφk(t), (4)

where ak(t) and φk(t) are respectively the time-varying am-
plitude and frequency of the k-th component. Each component
(or mode) can be characterized by a ridge located at its IF that
is defined as the derivative of the phase w.r.t. time dφk

dt (t). The
STFT of each component k can be approximated [17] by:

Fhk (t, ω) ≈ xk(t)Fh(ω − dφk
dt

(t)), (5)

and its IF (i.e. ridge) can be estimated using the local
maxima of |Fhx (t, ω)|. When the components are separable
(|dφidt (t) − dφk

dt (t)| ≥ ε,∀i 6= k, ε > 0), they can be
disentangled and reconstructed separately using Eq. (3) with
an integration region limited to the vicinity of the ridge such
as [17]:

xk(t) ≈ 1

h(0)

∫
|ω− dφkdt (t)|<ε

Fhx (t, ω) ejωt
dω

2π
(6)

where ε is an arbitrary small threshold.

C. Observation model

Given a MultiComponent Signal (MCS) (cf. Eq. (4)), we
aim at extracting separately the superimposed modes xk which
fully describe x. However, only a noisy version y of x is
known in practice such that y = x + ε, with ε standing
for an additive noise (assumed white Gaussian). Thus, we
consider as observation matrix S the M × N spectrogram

Shy = |Fhy |2 with Fhy [n,m] ≈ Fhy (nTs, 2π
m
MTs

) the discrete-
time STFT computed at time index n ∈ {0, 1, ..., N − 1}
and frequency bin m ∈ {0, 1, ...,M − 1}, Ts being the
sampling period and M (resp. N ) being the maximal number
of frequency bins (resp. time indices). L = T

Ts
is the time

spread of the Gaussian analysis window h used in this study.
We state sn = [S]n,: = [sn,0, . . . , sn,M−1]> is of size M × 1
where sn,m corresponds to the spectrogram value Shy [n,m].
Assuming for now that y is fully described by only one
component, and neglecting any other additional sources apart
from the signal, the observation model can be expressed for
any z ∈ [0,M − 1] as

p(z|m̄n) = g (z − m̄n) , (7)

where g(m) = 2
√
πL
M e−( 2πmL

M )
2

is the normalized and dis-
cretized squared modulus of the Fourier transform of h, and
m̄n is the ridge position at time n. Given m̄n, the elements in
sn are assumed independent and the joint likelihood can be
formulated as

p(sn|m̄n) =

M−1∏
m=0

p(sn,m|m̄n). (8)

III. ALTERNATIVE DIVERGENCES

Whilst the proposed model is extremely simple, it becomes
limited when either more than one ridge is present in the
TFR or when external noise sources corrupt the signal y.
For that reason, inferring estimates from the observations
through maximum likelihood estimation (MLE) for instance
can provide poor results. However, this choice is motivated
by the low cost of the estimation process. Nonetheless, not
only the similarity between the observation model and the
data distribution have a positive impact on the estimation
performance, but also the cost function to be optimized [14],
[16], [18]. For instance, performing MLE is equivalent to
minimize the KLD between the empirical data distribution
p̂n(z), and the postulated model in (7) such that

DKL(p̂n(z)||p(z|m̄n))=

∫
p̂n(z) log

(
p̂n(z)

p(z|m̄n)

)
dz. (9)

Note that it is possible to reach acceptable performance in the
case of model mismatch by modifying the cost function to be
minimized. This is equivalent to replace the similarity measure
associated with the optimization problem. In particular, using
alternative divergences instead of the classical KLD can im-
prove the estimation estimation performance in cases involving
discrepancies between the data and the observation model
[14], [16], [19]. Two divergences are considered in this paper,
namely the β-divergence (β-D): Dβ(p̂n(z)||p(z|m̄n)) =∫

− 1 + β

β
p̂n(z)p(z|m̄n)β + p(z|m̄n)1+β

+
1

β
p̂n(z)1+βdz, β > 0,

(10)



and the Rényi divergence (RD): Dα(p̂n(z)||p(z|m̄n)) =

1

α− 1
log
(∫

p̂n(z)αp(z|m̄n)1−αdz
)
, α > 0, α 6= 1.

(11)

A special case to be mentioned is when minimizing the β-D
(resp. RD) with β → 0 (resp. α→ 1), the resulting estimator
reduces to MLE. While minimizing the β-D can produce
robust estimators depending on the choice of β [19], the
RD allows to control, through α, the mass covering of the
observation [19]. Indeed, the logarithm of the quotient in the
KLD penalizes the region where p̂n(z) is under-estimated
by the model [19]. The parameter α in Eq. (11) controls
the weight given to each observation during the minimization
process. Selecting α ∈]0, 1[ remains to concentrate on regions
where p̂n(z)

p(z|m̄n) is large, while considering α > 1 will favor
the regions where the true distribution is underestimated,
highlighting broader approximated distribution.

IV. ESTIMATION STRATEGY

We propose to extract the ridge by sequentially estimating
its position m̄n for each time instant n. Thus, a pseudo-
Bayesian framework is adopted to infer estimates from the ob-
servations, which first requires the computation of the pseudo-
posterior distribution. The alternative divergences presented in
Section III are used to derive pseudo-likelihood terms, and we
assume the m̄n are assigned a prior distribution p(m̄n) whose
choice is discussed in Section IV-B.

A. Pseudo-posterior distribution

When the KLD is considered as the similarity measure, the
posterior distribution can be obtained in practice by maxi-
mizing the evidence lower-bound (ELBO) [20]. The resulting
distribution writes

p(m̄n|sn) ∝ e−MCEKL(m̄n)p(m̄n), (12)

where CEKL(m̄n) = − 1
M

∑
m log (p(sn,m|mn)) is the KLD

cross entropy (CE) term between the postulated model and
the empirical data distribution. In a similar fashion to [15],
[16], alternative pseudo-posterior distributions are built using
the CE derived from Eq. (10) and Eq. (11). The CE derived
from the β-D writes, for a fixed time n, CEβ(m̄n) =

−1 + β

β

∑
m

p(sn,m|m̄n)β +

∫
p(z|m̄n)1+βdz, (13)

and that of the Rényi, CEα(m̄n) =

1

α− 1
log

(∑
m

sn,m
αp(sn,m|m̄n)1−α

)
. (14)

B. Online approach

We consider now a set of N sequential temporal signals sn.
Once the p(m̄n|sn) has been computed, it becomes possible
to infer an estimate m̂n of the current ridge position at time n.
We perform this estimation through minimum mean squared
error (MMSE), and propagate this information along the

temporal direction using a prior model p(m̄n+1) to regularize
the estimation at time n + 1. Since weak informative prior
models are preferable over wrong ones, the following Gaussian
Random Walk (GRW) prior model is selected to alleviate
issues related to the propagation of spurious estimations

p(m̄n+1) ∝ N (m̂n, σ
2
rw)N̂n, (15)

where N (m̂n, σ
2
rw) is a Gaussian random walk modelling the

expected evolving of the IF, and N̂n is a Gaussian approxima-
tion of p(m̄n|sn) obtained by minimizing the KLD, remaining
to match the first and second moments. Following the assumed
density filtering principle, this model aims to propagate the
available information at each time using the previous estimate.
The variance σ2

rw determines how far m̂n+1 is allowed to be
from m̂n using the three-sigma rule of thumb, forcing the ridge
to present limited variations. Since the initialization coupled
with the slow evolving constraint imposed by the GRW limit
the performance for the first iterations, a backward correction
step is achieved after the estimation of the whole ridge.

C. Sequential multi-ridge estimation

Here, we extend the estimation process to MCS by ac-
counting for the presence of multiple ridges by applying the
proposed strategy sequentially. Indeed, an iterative process
based on the number of components K (assumed to be known)
is proposed. Note that K can be estimated if unknown (using
[21] for instance). Since there is no reason that repeating
the same process allows for the extraction of distinct modes,
the TFR is updated after each ridge detection by removing
the energy located at the corresponding IF. More precisely,
a temporary spectrogram Rk, containing only the estimated
ridge, is constructed and subtracted to the data Sk to gen-
erate an updated spectrogram Sk+1. R can be constructed
straightforwardly using a sequence g(m̂n), n ∈ [0,M−1]. The
proposed method is then repeated on the novel TFR until K
modes have been extracted. The overall procedure is detailed
in Algorithm. 1.

ALGORITHM 1

1: Input: TFR S0, GRW mean m̂0 and variance σ0, K, g.
2: for Component k = 1 to K do
3: for Time bin n = 0 to N − 1 do
4: Compute the prior model p(m̄n) by matching moments.
5: Compute the pseudo-posterior p(mn|sn) in Eq. (12).
6: Estimate m̂n by MMSE.
7: end for
8: Repeat steps 4 to 6 iterating from n = N − 1 to 0
9: Compute Rk.

10: Update the TFR Sk+1 = max [(Sk −Rk) , 0].
11: end for

D. Divergence parameters and motivation

Although the postulated observation model in Eq. (7) is
incomplete when multiple ridges are observed, the proposed
strategy circumvents this limitation as long as they do not
overlap. While estimating the divergence hyperparameters is
out of the scope of this paper, we remain interested by the



property of the resulting estimators. The lack of accuracy of
the model in the presence of outliers motivates the use of
the β-D, reducing model mismatch limitations since a broader
distributions will be used to infer estimates. Note that the
proposed strategy allows for the presence of any additive
noise as long as its distribution does not concentrate around
specific regions and if the divergence hyperparameters are
chosen accordingly. Conversely, the RD provides control over
the mass covering of the observations, and is motivated by the
presence of close ridges. In this situation, the remaining energy
corresponding to the tails of distinct ridges will accumulate
and skew them. Selecting α < 1 allows to produce thinner
distributions, as the divergence will seek the mode of the data
distribution. This property would be profitable in the case of
close ridge implying for instance the presence of remaining
energy after the ridge removal.

V. NUMERICAL RESULTS

In this section, we discuss the ridge detection and mode
reconstruction performance of our proposal1 compared to the
Brevdo method [10]. We consider a non-stationary signal made
of 3 components which correspond to a sinusoid, a linear chirp
and a sinusoidal FM chirp depicted in Fig. 1.

Fig. 1. Spectrogram of the analyzed multicomponent signal.

A. Robustness to Noise Analysis

We first consider the case of a linear chirp only (the second
component presented in Fig. 1) merged with a white Gaussian
noise with a SNR varying from -20 to 20 dB. We assess
our approach using respectively the KLD, the β-D and the
RD, compared with the Brevdo method [10]. The STFT was
computed using M = 500 and L = 50 and we initialized
our prior model using m0 = M/2, σ2

0 = (M/2)2/12 and
σ2
rw = 2. Hence, after estimation of the ridges, the signal

is reconstructed (from Eq. (3)) by considering a vicinity of

1Matlab code freely available at: https://fourer.fr/eusipco21/

8 frequency bins around the estimated IF. The estimation
performance of the ridge positions is assessed using the
relative mean squared error RMSE = 1

NM2 ‖m̄n − m̂n‖22,
which is displayed for the competing methods in Fig 2.

It can first be remarked that the proposed approach performs
better than the Brevdo one for almost all divergences and
parameters choice in all scenarios. The exceptions are at high
SNR with the β-D using β ∼ 1, and at very low SNR
(< −10dB). An interesting behaviour of the reconstruction
RMSE can be noted when using the β-D. Indeed, there is
an inversion of the tendency between the low and high SNR
regimes. In the absence of important noise (SNR> −5dB),
β ∼ 0 provide the best estimation while the best results for
low SNR are obtained using the robust approach (β ∼ 1).
Interestingly, the KLD is the most satisfying criterion until
−10dB, after what the β-D provides the best reconstruction.
The seeking property of the Rényi divergence allows efficient
estimation at high SNR since thinner posterior distribution
are computed in those cases. It also allows to circumvent the
particular nature of the noise spreading in the TFR at low SNR
[12]. We also assess the quality of the mode retrieval, which
are comparatively evaluated in terms of Reconstruction Quality
Factor (RQF): 10 log10

(
||x||2
||x−x̂||2

)
where x (resp. x̂) stands

for the reference (resp. estimated) signal. The RQF related to
the experiments performed in Fig. 2 are displayed in Fig. 3.
As expected, the better ridge estimation performance of the
proposed method allows for more efficient mode retrieval than
Brevdo. However, the remaining noise present in the TFR bins
used for reconstruction makes those performance less evident.

Fig. 2. RMSE (in dB) of the ridge positions (averaged over 100 realizations)
obtained with the different competing methods.

B. Multi-Ridge Detection and Mode Retrieval

We now consider the whole MCS displayed in Fig. 1 for
comparative assessment purpose. In this regard, we present
the resulting RQFs obtained with the competing methods in
Table I for a SNR = 10 dB and L = 20.



Fig. 3. RQF of competing methods (averaged over 100 realizations).

TABLE I
RQF OF EACH COMPONENTS (AVERAGED OVER 100 REALIZATIONS) FOR

THE DIFFERENT COMPETING APPROACHES FOR A SNR = 10 DB.

Sinusoid Linear chirp Sin. FM chirp Average
Brevdo-STFT 16.10 15.46 2.86 11.47
Brevdo-Synchrosqueezing 16.43 15.34 5.24 12.34
PB-β-D, β = 0.5 16.71 15.22 9.13 13.69
PB-β-D, β = 0.8 16.45 14.92 5.49 12.29
PB-KLD 2.46 2.65 1.18 2.10
PB-RD, α = 0.5 16.59 15.24 9.57 13.80
PB-RD, α = 0.8 15.44 15.22 7.84 12.83

The results show that our method obtains the best averaged
RQF using RD (α = 0.5). We note that in the presence
of moderate noise level (SNR=10dB), performing MLE does
not efficiently reconstruct the signal. Two differences to the
previous experiment in Fig. 2 have to be highlighted. First,
the SNR does not involve the same amount of noise since
three components are present in the considered signal. Then,
the presence of multiple ridges in the TFR involves important
model mismatch, since the incomplete model in Eq. (7) does
not only neglect noise disturbances but assumes for the pres-
ence of a single component. Even though the reconstruction
performances of the proposed algorithm are almost equivalent
to those of the Brevdo approach for both the sinusoid and the
linear chirp it performs much better for the recovery of the
sinusoidal FM chirp with a maximum RQF of 9.57 dB.

VI. CONCLUSION

In this paper, we have introduced a novel pseudo-Bayesian
procedure for estimating the ridge position in order to retrieve
the elementary components from a noisy MCS. The robust
approach can provide better results than the Brevdo method
while the simple observation model allows similar computa-
tional cost. An alternative procedure to the classical Bayesian
approach has been adopted to account for the lack of accuracy
of the observation model. More precisely, the β-D improves
the robustness of the estimation process and allows for model

mismatch, while the RD provides adapted tools to account
for the challenge of close ridges. The comparison with other
approaches has demonstrated a significant improvement of the
estimation performance of the ridge position. Moreover, the
proposed algorithm seems well adapted for the extraction of
frequency modulated signals. Future work will further inves-
tigate the alpha-beta divergence [19], merging the property of
both β-D and RD. Nonetheless, the hyperparameters and mask
width choices need to be considered. The method could also
be improved using the synchrosqueezing method.
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