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Résumé – Cet article propose une nouvelle méthode de détection appliquée sur des signaux d’électroencéphalographie de rats parkinsoniens
lors d’une expérimentation animale. Notre technique repose sur une implémentation par bancs de filtres récursifs de la transformée de Fourier à
court terme que nous améliorons par l’utilisation de plusieurs méthodes de réallocation temps-fréquence. Un détecteur est ensuite appliqué sur
la représentation obtenue afin d’identifier l’apparition de signaux HVS qui caractérisent les sujets atteints de maladies neurodégénératives. Nos
résultats montrent que cette approche améliore les performances de l’état de l’art tout en permettant un traitement temps réel.

Abstract – This paper proposes a new detection technique applied on electroencephalogram (EEG) signals which were measured on Parkin-
sonian rats during an experiment. Our technique uses a recursive filter-bank-based implementation of the short-time Fourier transform that is
sharpened using several time-frequency reassignment methods. A detector is then applied to the obtained representation to allow an identification
of the HVS signals which are specific to subjects with neurodegeneratives diseases. Our results show an improvement of the state of the art while
paving the way of a real-time implementation.

1 Introduction

Biosignals such as electroencephalogram (EEG), electromyo-
gram (EMG) or electrocorticogram (EcoG) can be viewed as
a mixture of several time-varying components. Such signals
can be addressed by time-frequency analysis [1] which offers
an efficient framework to deal with non-stationary components
while allowing to disentangle them [2]. Short-Time Fourier Trans-
form (STFT) and Continuous Wavelet Transform (CWT) be-
long to the most popular methods for which a significant num-
ber of implementations were realized (e.g. audio application,
radar signal processing, seismic, etc.).

Today, the contributions in time-frequency analysis aim at
improving the accuracy and the robustness of a computed Time-
Frequency Representation (TFR) to fulfill the requirement of
an arbitrary specific application. For instance, the Reassign-
ment (RST) [3] and the Synchrosqueezing Transform (SST) [4]
were introduced to efficiently improve the readability of a TFR
leading to new denoising or empirical mode extraction applica-
tions [2, 1]. Among these contributions, a recursive filter-based
implementation of the synchrosqueezing transform was propo-
sed for the STFT [5] and the CWT in [6] paving the way for
novel real-time applications.

In the present study, we propose to combine the recursive
SST with a detection method to identify particular patterns in
EEG signal. Excessive beta oscillations (called β-waves hence-
forth) were found to be associated with spatial memory impair-
ments [7]. Silencing High-Voltage-Spindle (HVS) with deep

brain stimulation (DBS) that resembles to the pathophysiologi-
cal β-waves is expected to delay the development of β-waves.
Thus, it may also delay the progression of Parkinson Disease
(PD) motor symptoms that are observed during the waking im-
mobility of patients. Despite rat signals are investigated in this
paper, our approach remains full of interest for preventing the
crisis of Parkinsonian patients.

Our paper is organized as follows : Section 2 describes the
recursive implementation of the reassigned and synchrosquee-
zed STFT ; an algorithm based on the Benjamini-Hochberg pro-
cedure is presented in Section 3 for (almost) real-time HVS de-
tection in TFRs ; then preliminary results are given in Section
4 before concluding the paper in Section 5 with future works
directions.

2 Recursive reassignment and synchro-
squeezed STFT

2.1 Definitions and properties
The STFT of a time signal x(t) is a function of the time t and

of the frequency ω that can be defined as a linear convolution
product between the analyzed signal and the complex-valued
impulse response of a bandpass filter g(t, ω)=h(t) ejωt cente-
red on frequency ω :

ygx(t, ω) =

∫ +∞

−∞
g(τ, ω)x(t− τ) dτ = |ygx(t, ω)| ejΨg

x(t,ω) (1)



where h(t) is a real-valued analysis window, Ψg
x is the phase

and j the complex number such as j2 = −1. The resulting TFR
is the spectrogram defined as |ygx(t, ω)|2. Thus, the original si-
gnal x(t) can be recovered from ygx with a time delay t0 ≥ 0
using the following synthesis formula :

x(t− t0) =
1

h(t0)

∫ +∞

−∞
ygx(t, ω) e−jωt0

dω

2π
, (2)

when ω 7→ ygx(t, ω) is integrable and when h(t0) 6= 0 (assumed
to be true in the following).

2.2 Reassignment
The reassignment method [3] is a sharpening technique which

can be applied on a TFR to improve the localization of the si-
gnal components by reassigning the values of an energy dis-
tribution to time-frequency coordinates that are closer to the
real support of the analyzed signal. The reassignment opera-
tors of the spectrogram can be related to the phase of the STFT
and computed as a function of STFT involving particular filter
functions [5] :

t̂(t, ω) = t− ∂Ψg
x

∂ω
(t, ω) = t− Re

(
yT gx (t, ω)

ygx(t, ω)

)
, (3)

ω̂(t, ω) =
∂Ψg

x

∂t
(t, ω) = Im

(
yDgx (t, ω)

ygx(t, ω)

)
(4)

where Dg(t, ω)= ∂g(t,ω)
∂t and T g(t, ω) = tg(t, ω). Finally, the

reassigned spectrogram is computed as :

Rg
x(t, ω)=

∫∫
R2

|ygx(t′, ω′)|2δ(t− t̂(t′, ω′))δ(ω − ω̂(t′, ω′)) dt′dω′

(5)
where δ(t) denotes the Dirac distribution. This TFR is shar-
pened but unfortunately non-reversible due to the loss of the
phase information.

2.3 Synchrosqueezed STFT
The synchrosqueezing method [8] is a variant of the reassi-

gnment method which also provides a sharpened linear time-
frequency transform but now admits a signal reconstruction
formula. Its consists in moving the transform instead of its
energy according to the frequency reassignment operator. The
new transform can be deduced from the synthesis formula (2)
as :

Sygx(t, ω) =

∫
R
ygx(t, ω′) e−jω

′t0δ (ω − ω̂(t, ω′)) dω′. (6)

As a result, |Sygx(t, ω)|2 provides a sharpened TFR and x(t)
can be estimated with a time-delay t0 by :

x̂(t− t0) =
1

h(t0)

∫
R

Sygx(t, ω)
dω

2π
. (7)

The signal components can be disentangled and individually
recovered as proposed in [2] by restricting the integration area
to the vicinity of each ridge.

2.4 Recursive implementation

A recursive implementation of ygx can be obtained if we use
for h(t) a causal recursive infinite impulse response filter [5] :

hk(t) =
tk−1

T k(k − 1)!
e−t/T U(t), (8)

gk(t, ω) = hk(t) ejωt =
tk−1

T k(k − 1)!
ept U(t) (9)

with p = − 1
T + jω, k ≥ 1 being the filter order, T the time

spread of the window and U(t) the Heaviside step function.
Hence, the impulse invariance method leads to the following

formulation of the filter defined by Eq. (9) :

Gk(z, ω) = TsZ {gk(t, ω)} =

k−1∑
i=0

biz
−i

1 +
k∑
i=1

aiz
−i

, (10)

with bi = 1
Lk(k−1)!

Bk−1,k−i−1α
i, α = epTs , L = T/Ts,

Z {f(t)} =
∑+∞
n=0 f(nTs)z

−n, ai = Ak,i (−α)
i, Ts being

the sampling period. Bk,i =
∑i
j=0(−1)jAk+1,j(i + 1 − j)k

denotes the Eulerian numbers and Ak,i =

(
k
i

)
= k!

i!(k−i)! the

binomial coefficients.
Thus, yk[n,m] ≈ ygkx (nTs,

2πm
MTs

) can be computed from the
sampled analyzed signal x[n] using a standard recursive equa-
tion :

yk[n,m] =

k−1∑
i=0

bi x[n− i]−
k∑
i=1

ai yk[n− i,m] (11)

where n ∈ Z and m = 0, 1, ...,M − 1 are respectively the
discrete time and frequency indices. The z-transform of the
other specific impulse responses can be expressed as functions
of Gk(z, ω) at different orders :

TsZ{T gk(t, ω)} = kTGk+1(z, ω) (12)

TsZ {Dgk(t, ω)} =
1

T
Gk−1(z, ω) + pGk(z, ω) (13)

which hold for any k ≥ 1 provided thatG0(z, ω) = G−1(z, ω) =
0. As a result, the reassignment operators can be computed as :

n̂[n,m] = n− Round
(

Re
(
T−1
s yT gx [n,m]

ygx[n,m]

))
(14)

m̂[n,m] = Round
(
M

2π
Im
(
Tsy
Dg
x [n,m]

ygx[n,m]

))
(15)

and both the reassignment and synchrosqueezing methods can
respectively be implemented 1 according to Eqs. (5) and (6).

1. Matlab c© full implementation of the code freely available at : https:
//github.com/dfourer/ASTRES_toolbox



3 HVS detection based on control FDR
We focus on the presence of energy located in the expected

frequency range of a HVS : Ω = [5, 13] Hz. Hence, a simple
detector can consider the following saliency function with va-
lues in [0, 1] as proposed in [9] :

zn =


1
K

∑
m∈Ω

TFR[n,m] , if
∑
m∈Ω TFR[n,m] < K

1 otherwise
(16)

where TFR[n,m] can arbitrary be replaced by the spectrogram
|yhx [n,m]|2, the reassigned spectrogram Rgx[n,m] or the squared
modulus of the synchrosqueezed STFT |Syhx [n,m]|2. In prac-
tice, the normalization factor K = maxn(

∑
m∈Ω TFR[n,m]) is

estimated using one minute of observation of a training data-
set. The probability density function of zn can be modeled as
a mixture of a beta distribution and a uniform distribution with
different parameters as illustrated in Fig. 2. Now, we assume
that we have a finite number N of pairs (zn, hn) where hn de-
notes the latent unit to predict. Among the samples, most of
them are assumed to follow the null hypothesis H0 (non HVS)
while the others follow the alternative hypothesis H1 (HVS) :

— H0 : the energy follows a uniform law : f0(zn) = 1[0,1]

— H1 : the energy follows a beta law : f1(zn) = aza−1
n 1[0,1].

Thus, the observed mixture density can be expressed as :

f(zn) = π0f0(zn) + (1− π0)f1(zn) (17)

with π0 = Pr(H0). In order to reject or not H0, we compute
the Bayes factor Bn such as :

Bn =
f0(zn)

f1(zn)
=

1

a
z1−a
n

H0

≷
H1

1 (18)

where parameter a can be estimated using the false discovery
control on multiple tests [10]. Let W be the set of values asso-
ciated to H1 (non HVS). Thus, the Bayesian False Discovery
Rate (FDR) can be expressed as :

bFDR = Pr(H0|zn ∈W ) =
π0 Pr(zn ∈W |H0)

Pr(zn ∈W )
= π0

F0(W )

F (W )
.

(19)
Let Wr1 be the set of the samples in the reject region with nr1
its number of elements. The bFDR can be computed as :

bFDR = π0
F0(Wr1)

F (Wr1)
= π0

a
1

1−a

F (Wr1)
(20)

where F (Wr1) can be approximated using the empirical cumu-
lative function : F̂ (Wr1) = nr1

N . We finally get the following
estimator of the Bayesian FDR :

b̂FDR(a) = π0
N

nr1
a

1
1−a . (21)

Assuming π0 = 1/2, we use the following estimator for a to
compute the detection threshold :

â = argmin
a
|b̂FDR(a)− FDR|. (22)

4 Numerical results
4.1 Dataset description

The PD rat models were induced in 3-4 months old Sprague-
Dawley rats by unilateral injection of 6-OHDA in the medial
forebrain bundle (MFB). To this end, an integrated electrophy-
siology instrument suitable for a DBS procedure was used. The
rats were unilaterally implanted by bipolar stimulation using an
electrode into the ipsilateral sub-thalamus nuclei (STN). The
electrode was lowered slowly along the dorsal ventral axis of
the brain and then advanced ventrally to the STN to obtain
an electrophysiological signal sampled at Fs = 1000 Hz with
a strikingly silent structure. The EEG signals were collected
from a group of 34 lesioned rats and 20 control rats in both
sleeping and waking immobile states in order to study the beha-
viour of spindling and non-spindling characteristics. The pro-
minent frequency components of HVS are around 5-13Hz and
the duration of each HVS episode is from 1 to 4 seconds.

Example TFRs of an EEG signal containing a HVS are dis-
played in Fig. 1 : the recursive spectrogram in Fig.1(a), the
recursive squared modulus of the synchrosqueezed STFT in
Fig.1(b) and the reassigned spectrogram in Fig.1(c). These TFRs
are computed using k = 5, M = 8000 and L = 5 and the ana-
lyzed frequencies are limited to the [0, 25] Hz range. The syn-
chrosqueezed STFT is computed with a delay n0 = (k − 1)L
which corresponds to the maximum of the analysis window
hk[n]. Our results clearly illustrate the sharpening capability of
the reassignment and of the synchrosqueezing methods when
applied on an EEG signal in comparison to the STFT. The main
advantage of our proposal is that each TFR can be computed in
real-time thanks to the recursive filtering implementation pro-
vided by Eq. (11).

4.2 Detection results
Our results use the squared modulus of the recursive syn-

chrosqueezed STFT and the reassigned spectrogram which are
considered as the input TFRs of the saliency function (16). Be-
fore estimating the delay of detection, we apply a median fil-
ter (of range 1 second) to reduce the effect of the noise. The
used detection threshold is trained on the first 60 seconds of
each analyzed signal. Table 1 presents the resulting Sørensen-
dice coefficients of each experiment which are defined as :
DICE = (|H0 ∩ Ĥ0|)/(|H0|+ |Ĥ0|) where the “ground truth”
reference is defined in [11]. Thus, we obtain excellent detection
results (with high dice values), especially using the recursive
reassigned spectrogram. Moreover, the resulting negative de-
lays show that our proposal can detect HVS earlier (i.e. faster)
than the reference thanks to the time-reassignment operation
and despite the resulting slightly lower dice coefficients.

5 Conclusion and future works
We have proposed a new HVS detection method based on

the recursive implementation of the reassigned and synchros-
queezed STFT. Our results show that the recursively computed
TFRs lead to a successful detection of the HVS with a lower de-
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FIGURE 1 – Comparisons of the different recursive TFRs computed for an EEG signal with a HVS.

(a) saliency function (b) histogram (c) beta law distribution

FIGURE 2 – Resulting saliency function (a) and its histogram (b) computed from the recursive synchrosqueezed STFT of an EEG
signal. Its probability density function can be compared to a beta distribution (c) with parameter a ∈ {0.1, 0.5, 1}.

TABLE 1 – HVS detection results provided by the proposed me-
thod. Each line corresponds to a PD rat. nh denotes the number
of detected HVS and thres corresponds to the the (standardi-
zed) threshold estimated for each FDR.

nh FDR
synchrosqueezed STFT reassigned spectrogram

thres delay [s] dice thresh delay [s] dice

19
1% 0,013 0,282 0,645 0,006 -0,220 0,615
2% 0,029 0,415 0,558 0,025 0,011 0,847
5% 0,082 0,554 0,301 0,076 0,220 0,581

6
1% 0,008 0,007 0,614 0,008 -0,403 0,612
2% 0,024 0,151 0,721 0,023 -0,125 0,780
5% 0,071 0,598 0,614 0,070 0,3710 0,698

7
1% 0,007 -0,011 0,450 0,006 -0,436 0,327
2% 0,019 0,168 0,703 0,017 -0,154 0,700
5% 0,063 0,298 0,606 0,060 0,052 0,794

3
1% 0,017 0,146 0,829 0,018 0,019 0,960
2% 0,036 0,334 0,838 0,037 0,146 0,921
5% 0,093 0,488 0,838 0,095 0,567 0,604

2
1% 0,002 -0,073 0,505 0,001 -0,181 0,319
2% 0,007 0,050 0,845 0,007 -0,220 0,849
5% 0,026 0,261 0,926 0,024 -0,068 0,986

2
1% 0,016 0,214 0,9620 0,016 -0,172 0,966
2% 0,033 0,36 0,967 0,032 -0,018 0,988
5% 0,083 0,728 0,952 0,082 0,192 0,979

1
1% 0,018 0,242 0,867 0,017 -0,115 0,951
2% 0,036 0,267 0,872 0,036 0,035 0,981
5% 0,090 0,399 0,893 0,092 0,067 0,964

lay than using classical methods. For a small FDR control, we
also successfully detect HVS before the ground truth using the
reassigned spectrogram. Future works will further investigate
the signal detection model and the parameters of the computed
TFRs to improve our detection results.
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