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Abstract—Brain tumor segmentation from MRI is an impor-
tant task in biomedical image processing that can help specialists
to predict diseases and to improve their diagnoses. Nowadays,
most of the state-of-the-art techniques are based on deep learning
neural networks for which the choice of the best architecture
remains an open question. Hence, this paper aims at providing
answers through an intensive and comprehensive comparison
between several promising neural network architectures. Our
study leads us to three approaches which are respectively based
on 2D U-Net, 3D U-Net and cascaded neural networks, that
are compared together and with another unsupervised technique
based on k-mean clustering. We also consider several enhance-
ment techniques such as data augmentation, curriculum learning
and an original boosting method based on majority voting. We
achieve to improve the results of the baseline methods in terms of
Dice score when the suitable combination of techniques is used.

Index Terms—Brain tumor segmentation, deep learning, MRI,
curriculum learning.

I. INTRODUCTION

Nowadays, image processing techniques can provide excel-
lent results in several tasks such as classification, detection
or segmentation. In biomedical applications, such tools are
useful for specialists to decision aids. More precisely, the
segmentation of brain tumors from multiple modalities can
produce predictions that are full of interest for surgical plan-
ning, postoperative analysis or radiotherapy [1], [2]. Brain
tumors are dangerous diseases which require early detection
and sometimes a drawn-out treatment. They can be benign
or malignant in the presence of cancerous cells. Primary ma-
lignant brain tumors are most frequently gliomas, or primary
central nervous system lymphomas. In such case, it has a faster
growth rate and is more threatening. Benign tumors are slower
in growth including low-grade variants and do not require an
immediate treatment. Both cases always require neuroimaging
prior, during and after treatment where automatic medical
imaging processing aids in evaluating the tumor progression,
surgical planning, and overall treatment [3].

The information acquired from the images provides use-
ful information to physicians. Shape, size, location, and
metabolism of brain tumors are relevant in the diagnosis [4].
Thus, brain MRI is a reliable imaging technique with a signifi-
cant influence on medical image analysis [5]. The challenging
tasks for artificial intelligence include detection, regression and
classification. To this end, deep learning techniques recently
gained interest by achieving excellent results in image recogni-
tion [6]. Since then, medical images segmentation, detection

and classification also benefits of recent advances based on
deep learning. In fact, for various applications, Deep Neural
Network (DNN) techniques and more specially those involving
Convolutional Neural Networks (CNN) are among the best
performing [7]. Some of them include breast ultrasound image
segmentation [8], lung segmentation for dynamic chest radio-
graphy [9] or detection of complete anterior cruciate ligament
tear [10].

This study focuses on the brain tumor segmentation from
MRI task for which public annotated datasets allow repro-
ducible research. This enables to comparatively assess the
efficiency of three distinct and promising deep learning archi-
tectures selected from the top-ten methods of the BraTS’17
challenge [11]. Now we aim at motivating the choice of an
architecture in comparison to another by presenting their ad-
vantages in an image segmentation problem while considering
the latest advances based on deep learning [1], [2], [7]. Our
study also investigates several enhancement techniques based
on data augmentation and boosting which can improve the
results when combined with an existing method. This paper is
organized as follows. In Section II, the segmentation problem
from MRI is formulated with the considered experimental
dataset. Section III describes the investigated MRI brain tumor
segmentation methods for which several enhancement tech-
niques are proposed in Section IV. The numerical results are
presented in Section V and discussed in the last section.

II. MATERIALS

A. Problem formulation

We aim at designing a method considering an MRI as
input and which provides a segmentation mask as output.
An MRI is a 3D volume corresponding to a set of several
images associated to the slices of the observed patient brain.
Each slice can exist in several modalities (e.g. T1, T2, flair)
which correspond to the same observation but with differ-
ent weights applied on each pixel. Hence, the investigated
methods automatically compute a segmentation mask from the
available information. The investigated task considers several
sub-regions of the tumor that should be segmented: whole
tumor (W.T), tumor core (T.C) and enhancing tumor (E.T).
An illustration of the addressed task is presented in Fig. 1.
The investigated supervised methods use a training dataset of
fully annotated MRI and are evaluated on a distinct test set.
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Fig. 1: Brain tumor segmentation of an MRI slice using different methods. The different sub-regions correspond to whole
tumor region (green+yellow+blue), tumor core region (yellow+blue) and enhancing tumor region (blue).

B. The BraTS dataset

The multimodal Brain Tumor Segmentation (BraTS) chal-
lenge [11] compares each year the best new methods and uses
a publicly available dataset1 allowing a transparent and re-
producible biomedical research. This study uses the BraTS’17
dataset which contains clinically-acquired pre-operative mul-
timodal MRI scans of glioblastoma (GBM/HGG) and lower
grade glioma (LGG) of 285 patients. The data of each pa-
tient contains several modalities native (T1), post-contrast T1-
weighted (T1Gd), T2-weighted (T2), Fluid Attenuated Inver-
sion Recovery (FLAIR) volumes. The ground truth is also
provided and corresponds to a manual segmentation that is
approved by neuro-radiologists. Since, the test set used by the
segmentation challenge is not available, the present study uses
our own split of the provided training dataset.

III. METHODS

A. 2D U-Net

The U-Net was first proposed for biomedical image seg-
mentation by Ronneberger et al. in 2015 [12] as an im-
provement on the fully convolutional neural networks for
semantic segmentation [13]. This architecture contains two
paths respectively called encoder and decoder made of several
convolutional and max-pooling layers at the encoder and
transposed convolution (up-conv) layers at the decoder. The
encoder is also called the contraction path and the decoder
is the expanding path. They follow the idea of an autocoder
to find a latent representation of a lower dimension than the
input that is used for the segmentation task. Our model follows
the U-Net architecture proposed by Dong et al. [14] depicted
in Fig. 2. Unlike the originally proposed U-Net, our model
uses zero-padding to preserve the dimension of the output at
each layer that enables more flexibility for the dimension of
the input. For the training, we use the Dice Loss Function
(DLF) given by Eq. (2) instead of the similarity coefficients
suggested in the original method.

B. 3D U-Net

Cicek et al. [15] extended the U-Net network for volumetric
segmentation. The inputs are the voxels from volumetric
images and the resulting output is a 3D segmentation mask.
Since medical imaging is frequently presented in the three-
dimensional realm, adjusting the network to take 3D input

1https://www.med.upenn.edu/sbia/brats2017/data.html

Fig. 2: 2-Dimensional U-Net Architecture

reduces the repetitive information. When fed slice-by-slice,
the neighboring slices often contain the same information.
The proposed 3D U-Net is based on the original U-Net
architecture that also includes the encoder and decoder paths.
The whole image is analyzed in the contracting path and
subsequent expansions produce the final segmentation. Some
of the changes include having all the operations in 3D and
using batch normalization which was shown to improve the
training convergence [16]. Another difference is the reduction
in the number of blocks in each path from five to four. The
Dice loss function in Eq. (2) was also used for the training
of this network. Fig. 3 illustrates the proposed architecture
where the encoder path blocks contain two 3D convolutions
followed by a Rectified Linear Unit (ReLU), and a 2 x 2 x
2 max-pooling with strides of two. The decoder path blocks
include 2 x 2 x 2 transposed convolution (up-conv) by strides
of two in each dimension and two 3D convolutions followed
by a ReLU. Shortcut connections between paths enable high-
resolution features from encoder to decoder path.

C. Cascaded Anisotropic Network

The cascade of three convolutional neural networks pro-
posed by Wang et al. [17] won the second place of MICCAI
2017 BraTS challenge. The contributions include a com-
bination of three CNNs that segment each of three sub-
regions sequentially: Whole tumor, Tumor core and Enhancing
tumor. Hence, anisotropic convolutions (i.e. dependent on the



Fig. 3: 3-Dimensional U-Net Architecture

direction) are used to deal with 3D MRI but it results in a
higher model complexity and memory consumption. Lastly,
the fusion of the CNN outputs in three orthogonal views (i.e.
axial, sagittal and coronal) is used to enhance the segmentation
of the brain tumor. The three CNNs follow the hierarchical
structure of the tumor sub-regions as depicted in Fig. 4.

Fig. 4: Triple Cascaded framework for segmentation of brain
tumor and its sub-regions [17].

As shown in Fig. 5, WNet and TNet have the same
architecture while ENet only uses one downsampling layer due
to the smaller input size. The WNet takes the full MRI as input
and segments the first region: whole tumor. A corresponding
bounding box (cf. Fig. 4) is computed and used as the input
of the TNet that segments the tumor core similarly used
for the ENet. The bounding boxes allow a restriction of the
segmentation region and minimize false positives and false
negatives. One of the cascade’s drawback is that it is not an
end-to-end method and thus training and testing time is longer
than with the other methods.

D. K-means : Unsupervised MRI segmentation

K-means clustering algorithm [18] is an unsupervised
method that is full of interest due to its simplicity and
relatively low computational complexity. K-Means clustering
divides a dataset into K (integer) homogeneous clusters.
K corresponds to the number of inertia centers (or cen-
troids) assigned to each cluster. Hence, for a set of points
{x1,x2, . . . ,xn}, with n > K, the algorithm separates the
data points into K subsets S = {S1,S2, . . . ,SK} by mini-
mizing the intra-class distance. After a random initialization
of the centroids, the algorithm iteratively assigns each point to
a cluster Sk and updates its corresponding centroid Ck until
convergence. The result S minimizes the overall distance of
each point to its cluster that can be expressed as:

S = argmin
S′

K∑
k=1

∑
xi∈S′

k

‖xi − Ck‖2 (1)

This method was shown suitable for biomedical image
segmentation as the number of regions to be segmented is
usually known. In our experiments which aim at segmenting
three subregions of the tumor, we set K = 3 to obtain a
segmentation of the whole tumor.

IV. PROPOSED ENHANCEMENT TECHNIQUES

A. Data augmentation

Data augmentation is well known technique which aims
at improving the robustness of a machine learning model by
artificially increasing the size of the reference training dataset
[19]. To this end, we should consider a set of data transforma-
tions for which we want our trained model to be invariant. In
this study, the following geometrical transformations are used
with randomly chosen settings:
• Rotation (90 degrees)
• Horizontal flip
• Vertical flip
• Cropping
• Gaussian white noise

B. Curriculum Learning

Curriculum learning [20] is a promising paradigm which
was first proposed to deal with non-convex optimization to
avoid the local optimum issue. The intuition behind curriculum
learning is to mimic the learning of human with a gradual
training process with examples sorted in an increasing level
of difficulty. Following this idea, we propose to pre-train the
considered models from artificially downsampled MRIs by a
progressive increasing level of resolution. This enhancement
was carried out by downsampling then upsampling by suc-
cessive factors equal to eight, four and two. Hence, the first
model is trained with the data that is downsampled/upsampled
by a factor eight. Once saved, it is re-trained with the data
that is downsampled/upsampled by a factor four. This process
is then repeated with the data downsampled/upsampled by a
factor two. Finally, the resulting model is trained with the data
in its original resolution.



Fig. 5: WNet, TNet and ENet with dilated convolution, residual connection and multi-scale fusion [17].

C. Boosting

In order to simultaneously take benefit of all the investigated
methods, this proposal consists in developing an original
improved method which combines all the resulting predic-
tions provided by each technique (i.e. 2D U-Net, 3D U-
Net, Cascaded network). Our approach simply considers an
equally-weighted majority voting applied to each pixel of the
input MRI. For the prediction, all the methods have the same
relevance (or weight) to assign a score to each prediction. The
final decision is set to use the prediction which obtains the
highest voting score. If several different predictions obtain an
identical score, the final prediction is randomly chosen among
the best proposed choices.

V. NUMERICAL EXPERIMENTS

A. Implementation

The investigated methods have been implemented in Python
using Tensorflow and Keras frameworks except for the
cascaded network for which the authors provides an imple-
mentation based on Niftynet2 [17]. Our computation were
completed on a Intel Xeon W-2133 CPU @ 3.60 Ghz with
32 GB of RAM and a NVIDIA GTX 1080 GPU. For the
sake of reproducibility, the used BraTS’17 dataset can be
downloaded at https://fourer.fr/publi/datasets/BRATS17.tar.gz
and our produced Python code can be found at:
https://github.com/ikramabdel/tumorsegmentation.

B. Experiment Details

In the first experiment, we considered the four methods:
2D U-Net, 3D U-Net, Cascaded Network and K-means for
which the training details are presented in Table I. The second
experiment combines the best method in terms of the highest
Dice (i.e. 2D U-Net) with the proposed enhancement meth-
ods. Hence, the results of the retrained model are presented
following a curriculum learning (CL) as well and through
Data augmentation (DA). The third experiment considers the
equally weighted majority voting performed using the 3D U-
Net, Cascaded Network and the best performing model (i.e.

2https://niftynet.io

2D U-Net + CL) from the second experiment. When used,
all the DA and CL transformation are applied on 25% of the
initial training dataset.

1) Data: From the original BraTS dataset, we selected
100 patients for the training-validation set and 25 patients
for test set. Within the set of 100 patients, 75 were used for
training, and 25 for the validation. To improve the compu-
tation efficiency of our evaluation, each MRI of the dataset
was cropped from 240x240x155 to 144x160x60, removing
background region pixels.

2) Training protocol: All the four supervised methods were
trained using the Dice Loss Function (DLF):

DLF(P, T ) = 1−
2
∑

i Pi × Ti∑
i Pi +

∑
i Ti + ε

(2)

where P denotes the set of the predicted labels (Pi being the
i-th element) and T the set of the corresponding ground truth.
We arbitrary defined ε = 1 to deal with the particular case
when P and T only contain background values equal to zero.
The 2D and 3D U-Net were trained with 300 epochs while the
Cascaded Anisotripic Network was only trained for 30 epochs
due to time restrictions. The network requires separate training
for each region and each of the three views which lengthens
training time.

C. Objective Evaluation Metrics

Our results presented in Tables II show the efficiency of
each method measured in terms of Sørensen-Dice indice,
Sensitivity, Specificity and Hausdorff distance that can be
formulated as (card () standing for cardinality):

Dice =
2 card (P

⋂
T )

card (P ) + card (T )
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

with TP = True Positives, TN = True Negatives, FP = False
Positives, FN = False Negatives and Sensitivity = Recall.



The Hausdorff distance is commonly used to measure how
far can be the extrema of two compared sets and provides an
information about the presence of outliers:

Haus(P, T ) = max

{
sup
p∈P

inf
t∈T

d(p, t), sup
t∈T

inf
p∈P

d(p, t)

}
(6)

where d(p, t) is defined as the Euclidean distance between the
pixel coordinates of p and t. Additional results presented in
III and IV detail the metrics of the confusion matrix for each
segmented region expressed as:

Precision=
TP

TP + FP
, Accuracy=

TP + TN

TP + FN + TN + FP

F1-Score = 2
Precision× Sensitivity
Precision + Sensitivity

(7)

VI. RESULTS & DISCUSSION

According to Table II, the 2D U-Net obtains the high-
est Dice scores for the three sub-regions during the first
experiment: whole tumor = 0.78, tumor core = 0.65 and
enhancing tumor = 0.46. Moreover, Table III also shows
that although the 2D U-Net does not have the lowest false
negatives, and false positives for all three regions since scores
relative to the Cascaded, 3D U-Net and Unsupervised methods
are not drastic. Given this result the 2D U-Net was chosen
for the enhancement experiments: Curriculum Learning (CL)
and Data Augmentation (DA). As for the equally weighted
majority voting the prediction of the first three methods were
used to obtain the final prediction. The enhancement of the
2D U-Net results shows that the three proposed enhancement
methods improve the Dice score and the sensitivity but the
2D U-Net trained with curriculum learning outperforms the
others. However, the Hausdorff distance was not significantly
reduced by the proposed enhancement methods. The detailed
results presented in Table III confirm the superiority of the 2D
U-Net in terms of confusion matrix metrics when trained with
curriculum learning.

VII. CONCLUSION

We have presented and compared together several deep
neural network-base methods applied to MRI brain tumor
segmentation. Our results confirmed the superiority of the deep
learning approach over a unsupervised approach. Moreover,
we show that the proposed curriculum learning is an efficient
strategy to easily improve the training efficiency of a deep
neural network model. In fact, this approach provides the best
results of this study when combined with a classical 2D U-
Net architecture. Hence, we conclude that 2D U-Net remains
a suitable choice for the segmentation of brain tumor with its
sub-regions in comparison to more complicated architectures
that are longer to train. Future work will consider semi-
supervised and weakly-labelled configurations which are more
challenging and require different strategies and architectures
for obtaining acceptable results.
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tumor image segmentation using deep learning methods. Procedia
Computer Science, 102:317–324, 2016.

[5] Lawrence O Hall, Amine M Bensaid, Laurence P Clarke, Robert P
Velthuizen, Martin S Silbiger, and James C Bezdek. A comparison of
neural network and fuzzy clustering techniques in segmenting magnetic
resonance images of the brain. IEEE transactions on neural networks,
3(5):672–682, 1992.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[7] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez.
A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

[8] Min Xian, Yingtao Zhang, Heng-Da Cheng, Fei Xu, Boyu Zhang,
and Jianrui Ding. Automatic breast ultrasound image segmentation: A
survey. Pattern Recognition, 79:340–355, 2018.

[9] Yuki Kitahara, Rie Tanaka, Holger R Roth, Hirohisa Oda, Kensaku Mori,
Kazuo Kasahara, and Isao Matsumoto. Lung segmentation based on a
deep learning approach for dynamic chest radiography. In Proc. SPIE
10950, Medical Imaging: Computer-Aided Diagnosis, 2019.

[10] Peter D Chang, Tony T Wong, and Michael J Rasiej. Deep learning for
detection of complete anterior cruciate ligament tear. Journal of digital
imaging, pages 1–7, 2019.

[11] Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-
Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz,
Johannes Slotboom, Roland Wiest, et al. The multimodal brain tumor
image segmentation benchmark (BRATS). IEEE transactions on medical
imaging, 34(10):1993–2024, 2015.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention, pages 234–241. Springer, 2015.

[13] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proc. IEEE conference on
computer vision and pattern recognition, pages 3431–3440, 2015.

[14] Hao Dong, Guang Yang, Fangde Liu, Yuanhan Mo, and Yike Guo.
Automatic brain tumor detection and segmentation using U-Net based
fully convolutional networks. In annual conference on medical image
understanding and analysis, pages 506–517. Springer, 2017.
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[17] Guotai Wang, Wenqi Li, Sébastien Ourselin, and Tom Vercauteren.
Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Con-
volutional Neural Networks, volume 10670 LNCS of Lecture Notes in
Computer Science, pages 178–190. Springer Verlag, Germany, 2 2018.

[18] J. MacQueen. Some methods for classification and analysis of multi-
variate observations. 1967.

[19] David A Van Dyk and Xiao-Li Meng. The art of data augmentation.
Journal of Computational and Graphical Statistics, 10(1):1–50, 2001.
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TABLE I: Experiment Details.

Method Loss Function Training Set Size # of Trainable Parameters Test Set Size Epochs Training duration (hours)
Cascaded Network Dice Loss 100 n/a 25 30 9
2D U-Net Dice Loss 100 31,032,451 25 300 13
3D U-Net Dice Loss 100 14,491,619 25 300 24

TABLE II: Overall comparative results.

Methods Dice Score Sensitivity Specificity Hausdroff Dist.
W.T T.C E.T W.T T.C E.T W.T T.C E.T W.T T.C E.T

Cascaded Network 0.75 0.59 0.58 0.75 0.66 0.73 0.78 0.74 0.80 4.91 4.39 3.61
2D U-Net 0.78 0.65 0.65 0.80 0.74 0.77 0.83 0.81 0.81 5.18 4.23 3.46
3D U-Net 0.73 0.61 0.46 0.81 0.65 0.72 0.87 0.77 0.86 5.77 4.64 4.13
K-Means 0.55 - - 0.53 - - 0.61 - - 5.42 - -
2D U-Net + CL 0.81 0.73 0.68 0.81 0.79 0.77 0.84 0.84 0.80 5.18 4.35 3.38
2D U-net+DA 0.80 0.71 0.67 0.80 0.78 0.77 0.83 0.84 0.81 5.10 4.27 3.40
2D U-Net + DA + CL 0.78 0.67 0.65 0.82 0.77 0.78 0.85 0.83 0.82 5.79 4.61 3.61
Majority Voting 0.81 0.69 0.66 0.82 0.73 0.76 0.86 0.80 0.82 5.06 4.32 3.44

with CL = Curriculum Learning, DA = Data Augmentation

TABLE III: Additional Results : Confusion Matrix metric

Methods False Negatives False Positives True Positives True Negatives
W.T T.C E.T W.T T.C E.T W.T T.C E.T W.T T.C E.T

Cascaded Network 0.28 0.35 0.25 0.0095 0.0079 0.0031 0.83 0.68 0.67 0.98 0.99 0.99
2D U-Net 0.20 0.24 0.24 0.011 0.0080 0.0020 0.80 0.67 0.78 0.99 0.99 0.99
3D U-Net 0.15 0.30 0.16 0.021 0.011 0.0054 0.63 0.55 0.42 0.99 0.99 0.99
K-Means 0.61 - - 0.018 - - 0.69 - - 0.94 - -
2D U-Net + CL 0.19 0.19 0.24 0.011 0.0072 0.0018 0.81 0.70 0.81 0.99 0.99 0.99
2D U-Net + DA 0.21 0.19 0.23 0.010 0.0077 0.0020 0.82 0.68 0.79 0.99 0.99 0.99
2D U-Net + DA + CL 0.17 0.20 0.21 0.013 0.0078 0.0023 0.77 0.68 0.75 0.99 0.99 0.99
Majority Voting 0.16 0.25 0.22 0.013 0.0079 0.0026 0.77 0.67 0.72 0.99 0.99 0.99

TABLE IV: Additional Results

Methods Precision Accuracy F1 Score
W.T T.C E.T W.T T.C E.T W.T T.C E.T

Cascaded Network 0.99 0.99 0.99 0.86 0.82 0.87 0.85 0.79 0.84
2D U-Net 0.99 0.99 0.99 0.90 0.87 0.88 0.88 0.85 0.87
3D U-Net 0.97 0.98 0.98 0.90 0.83 0.90 0.88 0.78 0.83
K-Means 0.97 - - 0.72 - - 0.69 - -
2D U-Net + CL 0.99 0.99 0.99 0.90 0.90 0.88 0.89 0.88 0.87
2D U-Net + DA 0.99 0.99 0.99 0.90 0.89 0.89 0.88 0.87 0.87
2D U-Net + DA + CL 0.98 0.99 0.99 0.90 0.89 0.89 0.89 0.87 0.90
Majority Voting 0.98 0.99 0.99 0.91 0.87 0.88 0.90 0.84 0.86

with W.T= Whole Tumor, T.C = Tumor Core, E.T=Enhancing Tumor.


