

Honey Bee Queen Presence Detection from Audio Field Recordings using Summarized Spectrogram and Convolutional Neural Networks

Agnieszka Orlowska, **Dominique Fourer**, Jean-Paul Gavini and Dominique Cassou-Ribehart

December 13, 2021

Purpose of this work

Goals

- A supervised precision beekeeping method for detecting bee queen from audio field recordings
- Enhancing the generalization capability of the trained model for unknown audio beehive recordings
- Evaluation through a beehive-independent cross-validation methodology

 \Rightarrow **Proposed approach:** Time-frequency analysis combined with a supervised deep convolutional neural network (CNN)

Context: the French Starlings Partners Project

Project holder: Dominique Cassou-Ribehart with Jean-Paul Gavini

Goals:

- Precision beekeeping using AI methods to efficiently monitor beehives health state
- Reducing the stress due to beehive inspection to protect bees
- Collaboration between Starlings Partners and professional beekeepers to collect data for a better understanding of bees behaviors
- Embedded, non-intrusive and low-cost hardware dedicated solution

https://desabeillesetnous.fr/

Content

Proposed approach

Audio-based Smart Beekeeping

Principle

Smart monitoring methods for predicting the health state of a beehive.

- Supervised/semi-Supervised machine learning approaches
- Sensors and Embedded hardware systems designed for beehives.
- Multi-modal data collection and processing (eg. audio, weight, hygrometry, temperature, CO₂, etc.) [Cecchi et al. 2018]

Motivation

Aiding beekeepers to preserve bio-diversity

A promising and recently emerging field of research since the late 2010s.¹

¹Cecchi, S., Terenzi, A., Orcioni, S., Riolo, P., Ruschioni, S., & Isidoro, N. (2018, May). A preliminary study of sounds emitted by honey bees in a beehive. In Audio Engineering Society Convention 144. Audio Engineering Society.

The audio-based approach

Audio signals can convey a lot of relevant informations about the state of a beehive. $^{\rm 2}$

	Freq. (Hz)	Signal Pattern	Sender	Possible Sig.
Tooting	300 ~ 500	Pulse sequence	Queen	Prevent hatching of further queens and trigger quacking
Quacking	300 ~ 350	Pulse sequence	Queen	Presence detection, viabilityof confined queens
Hissing	300 ~ 3600	Single pulse	Colony	Warning signal
Piping	100 ~ 2000	Single pulse	Scout	Triggers colony hissing, prepare for swarming
Recruit	200 ~ 350	Pulse sequence	Forager	Existence and quality of valuable food source

 $^2 Qandour,\,A.,\,Ahmad,\,I.,\,Habibi,\,D.,\,\&$ Leppard, M. (2014). Remote beehive monitoring using acoustic signals. Tech. Report. CCER, Australia.

Figure : Illustration of the overall proposed approach.

Problem Formulation

- \bullet Supervised prediction of the bee queen presence (\hat{y}) from audio recordings $_X$
- Training of the classification method using annotated data x^{train} , y^{train} by minimizing the prediction error $y \hat{y}$.

Materials

- Publicly available dataset introduced in [Nolasco, Benetos 2018]³ in the Open Source Beehive (OSBH) project and the NU-Hive project⁴.
- Bee signals acquired from six distinct beehives ("no bee" signals are ignored)
- Each audio recording is resampled at rate of $F_s = 22.05 \text{ kHz}$
- Each recording is split in one-second-long homogeneous time series (associated to the same annotation label).
- 17,295 distinct individuals where 8,444 ones are labeled as "queen" (y = 1) and 8,851 ones are labeled as "no queen" (y = 0).

Beehive name	queen	no queen	Total	
CF001	0	16	16	
CF003	3,700	0	3,700	
CJ001	0	802	802	
GH001	1,401	0	1,401	
Hive1	2,687	1,476	4,163	
Hive3	656	6,557	7,213	
Total	8,444	8,851	17,295	

³I. Nolasco and E. Benetos. To bee or not to bee: Investigating machine learning approaches for beehive sound recognition. Proc. DCASE 2018.

⁴https://zenodo.org/record/1321278.

Summarized Spectrogram Computation

Given a discrete-time finite-length signal x[n], with time index $n \in \{0, 1, ..., N-1\}$, and an analysis window h, the discrete STFT of x can be computed as:

$$F_{x}^{h}[n,m] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]^{*}e^{-j\frac{2\pi mk}{M}}$$
(1)

with z^* the complex conjugate of z, $j^2 = -1$, and $m \in \{0, 1, ..., M-1\}$ the frequency indices. $|F_x^h[n, m]|^2$ being the classical Spectrogram.

The Summarized Spectrogram is obtained by down-sampling the spectrogram along the frequency axis as:

$$\mathsf{SF}_{\mathsf{x}}^{h}[n,b] = g\left(|F_{\mathsf{x}}^{h}[n,m_{b}]|^{2}\right)_{\forall m_{b} \in \left[b \lfloor \frac{M}{2B} \rfloor, (b+1) \lfloor \frac{M}{2B} \rfloor - 1\right]}$$
(2)

with g() the summarizing function and B the desired number of quantization levels.

Summarized Spectrogram Examples (arithmetic mean function)

Deep Convolutional Network

Figure : Diagram of the proposed deep neural network architecture.

CNN 2d architecture

- 6 convolutional blocks including with a 3 \times 3 kernel size with a LeakyReLU activation, followed by a batch normalization, a 2 \times 2 max-pooling and a 25% dropout layers.
- 3 fully-connected (FC) layers including 2 dropout layers of respectively 25% and 50%.

Experimental Setup

Experiment 1:

We merge the 6 available beehives and then we apply a random split to obtain 70% of the individuals for training and 30% for testing.

Experiment 2:

We use a 4-fold cross-validation methodology where the beehives are independent. To this end, the folds have been manually created to assign each beehive to a unique fold as detailed in Table 1.

Fold		Training set					Testing Set		
Fold 1		CJ001 + GH001 + Hive3 + Hive 1 CF						01 + CF003	
Fold 2		CF001 + CF003 + Hive3 + Hive 1 CJ001 + GH00							
Fold 3	C.	CJ001 + GH001 + Hive3 + CF001 + CF003 Hive1							
Fold 4	C.	1001 + GH00		Hive3					
			Fold 1	Fold 2	Fold 3	Fold 4			
		queen	3700	1401	2687	(656		
		no queen	16	802	1476	6	557		
		Total	3716	2203	4163	7	213		

Table : Description of the partitioned dataset investigated in Experiment 2.

Hyperparameters Tuning

Figure : Average F-measure for different summary function g and B value configurations in Experiment 2. The best value is reached for B = 27 using the mean function as g.

Comparative Results - Random split

Table : Comparison of the classification results in Experiment 1 (random split).

Method	Features	Label	Precision	Recall	F-score	Accuracy	
MECCS CNN [Panatas at al. 10]	201/44	Queen	1.00	0.99	0.99	0.99	
MFCC3+CNN [Belletos et al. 19]	20×44	No queen	0.99	1.00	0.99		
	E12.44	Queen	1.00	0.93	0.97	0.07	
STFT+CNN	515×44	No queen	0.94	1.00	0.97	0.97	
	E12.44	Queen	0.96	0.93	0.95	0.05	
CQT+CNN	515×44	No queen	0.92	1.00	0.95	0.95	
	27×44	Queen	0.98	1.00	0.99	0.99	
mean-CQT+CNN		No queen	0.99	0.98	0.98		
	27×44	Queen	0.99	1.00	1.00	1.00	
mean-STFT+CNN		No queen	1.00	0.99	1.00		
	27×44	Queen	0.99	1.00	1.00	1.00	
mean-STFT+CNN+DA		No queen	1.00	0.99	1.00		

• All the methods provide satisfying classification results in a random-split evaluation experiment⁵.

⁵Data Augmentation (DA) consists in artificially increasing of 50% the size of the training dataset with examples merged with a white Gaussian noise to obtain a SNR of 30 dB.

Comparative Results - beehive-independent 4-fold-cross validation

Table : Comparison of the classification results in Experiment 2 (4-fold hive-independent cross-validation).

Method	Features	Label	Precision	Recall	F - score	Accuracy	
MECCe CNN [Penetec et al. 10]	20×44	Queen	0.36	0.44	0.40	0.31	
MFCCs+CNN [Benetos et al. 19]		No queen	0.22	0.16	0.19	0.51	
	513×44	Queen	0.77	0.76	0.66	0.55	
STFT+CNN		No queen	0.33	0.20	0.33		
	513×44	Queen	0.10	0.07	0.08	0.25	
CQT+CNN		No queen	0.32	0.41	0.36	0.25	
	27×44	Queen	0.25	0.11	0.16	0.38	
mean-CQT+CNN		No queen	0.41	0.65	0.50		
moon STET I CNN	27×44	Queen	0.71	0.86	0.78	0.75	
mean-STFT+CNN		No queen	0.81	0.64	0.71		
	27×44	Queen	0.96	0.99	0.96	0.06	
mean-STFT+CNN+DA		No queen	0.99	0.94	0.96	0.90	

- Only the STFT-based methods provide satisfying classification results in a random-split evaluation experiment.
- All the other methods obtain very poor results using of not DA (Accuracy <0.5)

Conclusion and future work

Contributions summary

- A beehive-independent comparative evaluation to investigate the generalization capability of existing bee queen detection methods based on the public Nu-Hive dataset
- A promising approach for both reducing the computational cost and the input size of a CNN-based audio classification method
- Improving the generalization capability of the trained model of the proposed CNN-based neural architecture

Future work

- A further investigation of the summary spectrogram to explain why this method is efficient
- Optimization of the summary function g()

Code freely available for the sake of reproducible research at https://github.com/agniorlowska/beequeen_prediction