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abstract

The present work proposes a simple supervised method based on a downsampled
time-frequency representation of the input audio signal for detecting the presence
of the queen in a beehive from noisy field recordings. Our proposed technique com-
putes a “summarized-spectrogram” of the signal that is used as the input of a deep
convolutional neural network. This approach has the advantage of reducing the di-
mension of the input layer and the computational cost while obtaining better classi-
fication results with the same deep neural architecture. Our comparative evaluation
based on a cross-validation beehive-independent methodology shows a maximal ac-
curacy of 96% using the proposed approach applied on the evaluation dataset. This
corresponds to a significant improvement of the prediction accuracy in comparison
to several state-of-the-art approaches reported by the literature. Baseline methods
such as MFCC, constant-Q transform and classical STFT combined with a CNN
fail to generalize the prediction of the queen presence in an unknown beehive and
obtain a maximal accuracy of 55% in our experiments.
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1 Introduction

Smart beekeeping is an emerging and promising research field which aims at provid-
ing computational solutions for aiding the monitoring of bee colonies. It is known
[13, 12] that bees produce specific sounds when exposed to stressors such as fail-
ing queens, predators, airborne toxicants. However experienced beekeepers are not
always able to explain the exact causes of the sound changes without a hive inspec-
tion. Nonetheless, hive inspections disrupt the life cycle of bee colonies and can
involve additional stress factors for the bees [3, 2]. With this in mind, several re-
cent studies propose to analyze the audio signature of a beehive through a machine
learning approach [10, 3] in order to develop systems for automatically discrimi-
nating the different health states of a beehive. For example, in [8, 7], the authors
propose a method which combines the Short-Time Fourier Transform (STFT) of the
analyzed audio recording with convolutional neural networks (CNN) to discrimi-
nate bee sounds from the chirping of crickets and ambient noise. This approach
outperforms classical machine learning methods such as k-nearest neighbors, sup-
port vector machines or random forests for classifying audio samples recorded by
microphones deployed above landing pads of Langstroth beehives[1]. The detection
of the queen presence appears to be one of the most important tasks for smart bee-
keeping and is addressed in [4] with a complete beehive machine-learning-based
audio monitoring system. More recently in [2, 11], the authors investigate Music
Information Retrieval (MIR)-inspired approaches based on mel-frequency cepstral
coefficients (MFCC), and on the spectral parameters of sinusoidal signal compo-
nents as input features of a supervised classification method based on a CNN to
predict for the presence of the queen in a beehive from recorded audio signals.

In spite of promising results reported in the literature, a further evaluation of the
state-of-the-art approaches reveals overfitting problems using the trained models for
detecting the queen presence, when applied to distinct beehives as presented for ex-
ample in [10] through a beehive-independent classification experiment. This lack of
generality for the trained model can be critical in real-world application scenarios
because the trained models cannot efficiently be applied to another arbitrary cho-
sen beehive without a new beehive-specific training of the model using annotated
examples. Thus, the present work introduces a very simple but efficient transfor-
mation technique which improves the results of a CNN-based audio classification
method in beehive-independent configurations. We compute a “summarized” time-
frequency representation through a specific downsampling technique which exper-
imentally reveals a better generalization of the trained model based on a convolu-
tional neural network architecture. Our technique can arbitrary reduce the dimension
of the input features provided to the CNN to obtain the best trade-off between the
model accuracy and the computational cost.

This paper is organized as follows. In Section 2, we present the framework of
the problem addressed in this study with a description of the experimental materi-
als. In Section 3 we present the proposed approach and we introduce our supervised
technique based on the summarized spectrogram for automatically predicting the
queen presence in a beehive from audio recordings. In Section 4, we comparatively
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assess our new proposed method with several state-of-the-art approaches, in terms
of prediction accuracy with a consideration for the dimension of the computed au-
dio features. Finally, this paper is concluded by a discussion including future work
directions in Section 5.

2 Framework

Fig. 1 Illustration of the overall proposed approach.

2.1 Problem formulation and notations

We address the problem of prediction the state of a beehive using an audio signal
x resulting from a field recording of a monitored beehive. The overall approach
is based on a supervised machine learning approach depicted in Fig. 1 in which
relevant audio features are first computed from x before being processed by a clas-
sification method. At the training step, training examples xtrain and labels ytrain

are used to fit the model parameters of the classification method. At the testing step,
the trained model is used to predict from x the associated state of the beehive asso-
ciated to a label ŷ (y being the unknown ground truth). This work aim at proposing
the best processing pipeline allowing an accurate prediction of the beehive health
state, and focuses on the signal transformation and feature extraction step.

2.2 Materials

We use the publicly available dataset introduced by Nolasco and Benetos in [10] dur-
ing the Open Source Beehive (OSBH) project and the NU-Hive project1. The dataset
contains annotated audio samples acquired from six distinct beehives. The present
work focuses on the audio signals which were annotated as “bee”, corresponding to

1 https://zenodo.org/record/1321278.



4 Authors Suppressed Due to Excessive Length

sounds emitted by the beehive. Hence, the “no bee” annotated signals correspond
to external noises and are simply not investigated in our study. At a pre-processing
step, each audio recording is resampled at rate of Fs = 22.05 kHz as in [10] and
is transformed to single-channel signals by averaging samples from the available
channels. Each recording is then split in one-second-long homogeneous time series
(associated to the same annotation label). As a result, we obtain a dataset of 17,295
distinct individuals where 8,444 ones are labeled as “queen” (y = 1) and 8,851 ones
are labeled as “no queen” (y = 0). An overview of the investigated dataset with the
considered labels for each beehive is presented in Table 1.

Table 1 Description of the dataset content investigated in the present study. Each individual cor-
responds to a one-second-long audio signal sampled at Fs = 22.05 kHz.

Beehive name queen no queen Total
CF001 0 16 16
CF003 3,700 0 3,700
CJ001 0 802 802
GH001 1,401 0 1,401
Hive1 2,687 1,476 4,163
Hive3 656 6,557 7,213

Total 8,444 8,851 17,295

3 Proposed Method

3.1 Time-frequency representation computation

The Short-Time Fourier Transform (STFT) is a popular technique designed for com-
puting time-frequency representations of real-world signals. STFT appears in a large
number and variety of signal processing methods which involve non-stationary mul-
ticomponent signals that can efficiently be disentangled using a Fourier transform
combined with a sliding analysis window [6]. Given a discrete-time finite-length
signal x[n], with time index n ∈ {0, 1, ..., N − 1}, and an analysis window h, the
discrete STFT of x can be computed as:

Fhx [n,m] =

+∞∑
k=−∞

x[k]h[n− k]∗e−j 2πmk
M (1)

with z∗ the complex conjugate of z and j2 = −1. Here, m ∈ {0, 1, ...,M − 1}
corresponds to an arbitrary frequency bin associated to the frequency f = m

M Fs
expressed in Hz, for m ≤ M

2 .
The spectrogram is defined as the squared-modulus of the STFT |Fhx [n,m]|2 [5].
In practice, it is fractioned along the time axis by considering an integer hop size
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∆n > 1 with a possible overlap between adjacent frames. As a result, we obtain
a M × L matrix with M the arbitrary number of computed frequency bins, and
L = b N∆nc (b.c being the floor function) the resulting number of time indices such
as L ≤ N when ∆n > 1.

3.2 Summarizing process

Fig. 2 Classical- and summarized-spectrogram time-frequency representation comparison of a
one-second-long beehive audio recording.

The main problem occurring when a STFT is used as the input of a neural net-
work is the high number of input coefficients which can lead to a high memory con-
sumption and a heavy computation cost during the training step. Hence, we propose
a simple dimension reduction method of the spectrogram which aims at preserving
the relevant information present in the time-frequency plane without modifying the
original time-frequency resolution related to the analysis window. To this end, we
use a summary process on the computed spectrogram |Fhx [n,m]|2 which consists
in two steps. First, the positive frequency axis (m ∈ [0, bM2 c]) is partitioned into a
finite number of equally spaced frequency bands such as B < M

2 . Second, at each
time index, the information of each frequency band is summarized into a unique
coefficient by applying a summary aggregating function denoted g() along the fre-
quency axis (the best choice for g is discussed later). The summarized-spectrogram
SFhx with a reduced dimension of B × L is computed as:

SFhx[n, b] = g
(
|Fhx [n,mb]|2

)
∀mb∈[bb M2B c,(b+1)b M2B c−1]

(2)
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with b ∈ [0, B− 1] the new frequency bin. We illustrate in Fig. 2 the result obtained
by computing the summarized-spectrogram of two audio signals corresponding to
beehive recordings respectively labeled as “queen” and “no queen” using the arith-
metic mean as g function.

3.3 2D Convolutional Neural Network

CNN is a natural choice for analyzing a time-frequency representation that can
also be considered as an image. To predict the label corresponding to the state
of a beehive from an audio signal, the resulting summarized-spectrogram is pro-
cessed by the deep neural network architecture inspired from [2] using 2 additional
convolutional layers. It consists of 6 convolutional blocks including with a 3 × 3
kernel size, followed by a batch normalization, a 2 × 2 max-pooling and a 25%
dropout layers. The output is connected to a 3 fully connected layers (FC) includ-
ing 2 dropout layers of respectively 25% and 50% followed by a softmax activation
function to compute the predicted label ŷ (rounding to the closest integer 0 or 1).
Convolutional and FC layers both use a LeakyReLU activation function defined as
LeakyRELU(x) = max(αx, x), with α = 0.1.

4 Numerical Experiments

4.1 Experimental protocol

We propose here two distinct experiments for comparatively assessing our new pro-
posed method described in Section 3 with several other state-of-the-art approaches
for predicting the queen presence.
Experiment 1: We merge the 6 available beehives and then we apply a random split
to obtain 70% of the individuals for training and 30% for testing.
Experiment 2: We use a 4-fold cross-validation methodology where the beehives
are independent. To this end, the folds have been manually created to assign each
beehive to a unique fold. An exception is made for the testing folds 1 and 2 which
contain two beehives since CF001, CF003, CJ001 and GH001 only contain individ-
uals from the same annotation label. The proposed partitioning of the whole dataset
in Experiment 2 is detailed in Table 2.

4.2 Implementation details

The investigated methods have been implemented in python using when needed
the following libraries: Librosa is used for audio processing and features extrac-
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Table 2 Description of the partitioned dataset investigated in Experiment 2.

Fold Training set Testing Set
Fold 1 CJ001 + GH001 + Hive3 + Hive 1 CF001 + CF003
Fold 2 CF001 + CF003 + Hive3 + Hive 1 CJ001 + GH001
Fold 3 CJ001 + GH001 + Hive3 + CF001 + CF003 Hive1
Fold 4 CJ001 + GH001 + Hive1 + CF001 + CF003 Hive3

Fold 1 Fold 2 Fold 3 Fold 4
queen 3700 1401 2687 656

no queen 16 802 1476 6557

Total 3716 2203 4163 7213

tion, Keras with Tensorflow are used for the implementation and the use of the
proposed CNN architecture, and scikit-learn [9] is used for computing the evalu-
ation metrics. The training of our CNN was configured for a constant number of
50 epochs with a batch size of 145. The numerical computation was performed
using an Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz CPU with 32GB of RAM
and a NVIDIA GTX 1080 TI GPU. The Python code used in this paper is freely
available at https://github.com/agniorlowska/beequeen_prediction for
the sake of reproducible research.

Fig. 3 Average F-measure for different summary function g and B value configurations.
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4.3 Hyperparameters tuning and data augmentation

To define the best value of B with the best summary function g(), we evaluated
several configurations by considering the beehive-independent Experiment 2 proto-
col. According to the results presented in Fig. 3, we chose B = 27 and the mean
function which obtained the best results. We also tried to apply the summarizing
process separately on the real and the imaginary part of the STFT before comput-
ing the spectrogram however this provides very poor results in each configuration.
To improve the performance of the trained model, we used a data augmentation
(DA) technique which artificially increases of 50% the number of training individ-
uals by the addition of a white Gaussian noise to existing ones. The variance of the
noise signal has been define to obtain a resulting signal-to-noise-ratio (SNR) equal
to 30 dB. Due to the increase of computation time, we only applied DA on the best
resulting method presented in Tables 3 and 4. Our simulations show that DA does
not significantly improve the results obtained with MFCC and CQT-based methods
which are poorer than with the STFT.

4.4 Comparative results

Our proposed method is compared to several existing approaches introduced in
[10, 11]. The Mel Frequency Cepstral Coefficients (MFCCs) + CNN method is a
popular approach proposed in [11] where the number of computed MFCC is set
to 20. The constant-Q transform (CQT) + CNN, was also investigated as a base-
line method since CQT which can be viewed as a modified version of the discrete
STFT with an varying frequency resolution.The so-called Q-factor corresponds to
Q = f

∆f where ∆f is the varying frequency resolution (difference between two
frequency bins). All the investigated signal representations use exactly the same
CNN architecture for which the dimension of the input layer is adapted. The clas-
sification results are obtained with our proposed method based on the mean sum-
mary function for a number of frequency bands B = 27 computed from a STFT
or CQT with M = 1025 and with an overlap of 50% (∆n = 512) between adja-
cent frames to obtain an input features matrix of dimension 27× 44. The results in
the two experiments respectively expressed in terms of Precision, Recall, F-score
and Accuracy metrics are reported in Tables 3 and 4. According to Table 3, all the
compared methods are almost equivalent since they obtain excellent classification
results with an almost perfect accuracy of 1. These results are comparable with
those reported in the literature and can be explained by the fact that all the available
beehives are merged in the same training set. The beehive-independent results are
presented in Table 4 and are very different. Now, the best results in Experiment 2
are only obtained with our proposed method (denoted mean-STFT) which uses the
summarized-spectrogram combined with a CNN and obtains an average F-score of
0,75. The use of the data augmentation improves the results and leads to a maximum
accuracy of 0,96.
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Table 3 Comparison of the classification results in Experiment 1 (random split).

Method Features Label Precision Recall F-score Accuracy

MFCCS+CNN [11] 20×44 Queen 1.00 0.99 0.99 0.99No queen 0.99 1.00 0.99

STFT+CNN 513×44 Queen 1.00 0.93 0.97 0.97No queen 0.94 1.00 0.97

CQT+CNN [11] 513×44 Queen 0.96 0.93 0.95 0.95No queen 0.92 1.00 0.95

mean-CQT+CNN 27×44 Queen 0.98 1.00 0.99 0.99No queen 0.99 0.98 0.98

mean-STFT+CNN 27×44 Queen 0.99 1.00 1.00 1.00No queen 1.00 0.99 1.00

mean-STFT+CNN+DA 27×44 Queen 0.99 1.00 1.00 1.00No queen 1.00 0.99 1.00

Table 4 Comparison of the classification results in Experiment 2 (4-fold hive-independent cross-
validation).

Method Features Label Precision Recall F - score Accuracy

MFCCs+CNN [11] 20x44 Queen 0.36 0.44 0.40 0.31No queen 0.22 0.16 0.19

STFT+CNN 513×44 Queen 0.77 0.76 0.66 0.55No queen 0.33 0.20 0.33

CQT+CNN 513×44 Queen 0.10 0.07 0.08 0.25No queen 0.32 0.41 0.36

mean-CQT+CNN 27x44 Queen 0.25 0.11 0.16 0.38No queen 0.41 0.65 0.50

mean-STFT+CNN 27x44 Queen 0.71 0.86 0.78 0.75No queen 0.81 0.64 0.71

mean-STFT+CNN+DA 27×44 Queen 0.96 0.99 0.96 0.96No queen 0.99 0.94 0.96

5 Conclusion

We have introduced and evaluated a new downsampling method for improving the
prediction of the presence of a queen bee from audio recordings using a deep CNN.
Despite its simplicity, the summarized-spectrogram has a better efficiency in com-
parison to other perception-motivated representations such as MFCC or CQT, when
they are used as input features for the queen presence detection problem. Hence,
we have obtained a maximal resulting accuracy of 96% in a beehive-independent
split configuration which is very promising. This result paves the way of future real-
world applications of smart beehive monitoring techniques based on embedded sys-
tems. Future work consists in a further investigation including more data provided
by monitored beehives. Moreover, we expect a further investigation of the relevant



10 Authors Suppressed Due to Excessive Length

information conveyed by the summarized-spectrogram when used for providing au-
dio features, in order to design new audio classification methods.
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