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Purpose of this work

Goals

Computing efficient representations for handling non-stationary
multicomponent signals

Dealing with impulsive-like and/or strongly modulated signals

Reversible representation allowing an extraction of the elementary signal
components

Meaningful information extraction from observation

⇒ Proposed approach: Time-frequency analysis combined with
reassignment-based post-processing methods (i.e. synchrosqueezing)
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Context of our research:
the ASTRES project 2014-2017 funded by the French ANR

ASTRES: Analysis, Synthesis and Transformation by Reassignment, EMD and
Synchrosqueezing.

Offers a new toolbox for non-stationary multicomponent signal processing:
https://github.com/dfourer/ASTRES_toolbox

D. Fourer, J. Harmouche, J. Schmitt, T. Oberlin, S. Meignen, F. Auger and P. Flandrin. The ASTRES Toolbox
for Mode Extraction of Non-Stationary Multicomponent Signals. Proc. EUSIPCO 2017, Aug. 2017. Kos Island,
Greece.
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The new French ANR ASCETE project: 2019-2022

ASCETE: Analysis and Separation of Complex signal: Exploiting the
Time-frequency structurE

Project holder: Sylvain Meignen (LJK, Grenoble)

Extends the previous methods with stochastic models

Combines signal processing methods with machine learning

New applications to audio, biomedicine, astrophysics, etc.
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STFT definitions

We define the STFT of a signal x as a function of time t and frequency ω

computed using a differentiable analysis window h as:

F
h
x (t, ω) =

∫

R

x(τ)h(t − τ)∗ e
−jωτ

dτ (1)

with j2=−1 the imaginary unit and z∗ the complex conjugate of z .

A time-frequency representation is provided by the spectrogram defined as:
|F h

x (t, ω)|
2.

Signal reconstruction formula:

x(t) =
1

2πh(0)∗

∫

R

F
h
x (t, ω) e

jωt
dω (2)

when h(0) 6= 0
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The reassignment method [Kodera et al. 1978] [Auger,Flandrin, 1995]

Principle

Improves the readability of a time-frequency representation (TFR):
Reassignment moves the signal energy according to: (t, ω) 7→(t̂x (t,ω), ω̂x (t,ω)),
where t̂x(t, ω) is a group-delay estimator and ω̂x(t, ω) is an instantaneous
frequency estimator.

Both time-frequency reassignment operators can be computed as follows (STFT case):

t̂x (t,ω) = Re
(

t̃x (t,ω)
)

,with t̃x (t,ω) =t −
FT h

x (t,ω)

Fh
x (t,ω)

(3)

ω̂x (t,ω) = Im (ω̃x (t,ω)) ,with ω̃x (t,ω)=jω +
FDh

x (t,ω)

Fh
x (t,ω)

(4)

where T h(t)= th(t) and Dh(t)= dh
dt

(t) are modified versions of the analysis window h.
The reassigned spectrogram is computed by:

RFh
x (t, ω) =

∫∫

R2
|Fh

x (τ,Ω)|2δ
(

t − t̂x (τ,Ω)
)

δ (ω − ω̂x (τ,Ω)) dτdΩ. (5)

The resulting reassigned spectrogram RFx (t, ω) is a sharpened but non-reversible TFR
due to the loss of the phase information.
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The reassigned spectrogram

Rx(t, ω) =

∫∫

R2

∣

∣

∣
F

h
x (τ,Ω)

∣

∣

∣

2

δ(t − t̂(τ,Ω))δ(ω − ω̂(τ,Ω)) dτ
dΩ

2π
(6)

(a) |Fh
x (t, ω)|2 (b) R

h
x (t, ω)
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Synchrosqueezing [Daubechies 1996, 2011] [Thakur 2011]

Principle

A variant of the reassignment method to compute sharpen and reversible TFRs by
reassigned the transform instead of its energy to preserve the phase information.

Computation of the synchrosqueezed STFT:

Sx (t, ω) =
1

h(0)

∫

R

Fh
x (t,Ω)δ(ω − ω̂(t,Ω))

dΩ

2π
(7)

Its signal reconstruction formula:

x̂(t) =

∫

suppΩ(x)
Sx (t,Ω)dΩ (8)
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Mode extraction

Principle

Apply a time-frequency mask over a previously computed reversible TFR.
⇒ Performs better if the components are sparse and well disentangled.

[Brevdo, 2011] method finds the best frequency curve Ω(t) to maximizes the energy
with a smooth constraint through a total variation penalization term:

Ω̂=argmax
Ω

∫

R

|Sx (t,Ω(t))|2 dt − λ

∫

R

∣

∣

∣

∣

dΩ

dt
(t)

∣

∣

∣

∣

2

dt, (9)

where λ controls the importance of the smoothness of Ω.

Notice: When the ridges of several components have to be estimated, this method can
be iterated after subtracting the energy located at the previously estimated ridge.
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Rationale
Second-order time-reassigned synchrosqueezing

STFT properties

The STFT marginalization over time of F h
x (t, ω) leads to:

∫

R

F
h
x (t, ω) dt =

∫∫

R2
h(t − τ)∗x(τ) e

−jωτ
dtdτ (10)

=

∫∫

R2
h(u)∗x(τ) e

−jωτ
dudτ (11)

=

∫

R

h(u)∗du

∫

R

x(τ) e
−jωτ

dτ (12)

= Fh(0)
∗
Fx(ω) (13)

with Fx(ω)=
∫

R
x(t) e−jωt dt the Fourier transform of signal x .

Hence, the signal can be recovered by:

x(t) =
1

2πFh(0)∗

∫∫

R2
Fx(τ, ω) e

jωt
dτdω (14)
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Time-reassigned synchrosqueezed STFT [He 2019]

Principle

Synchrosqueezes the original transform along the time axis instead of the
frequency axis exploiting the STFT properties when marginalized over time.

The time-reassigned synchrosqueezed STFT can be defined as:

T
h
x (t, ω) =

∫

R

F
h
x (τ, ω)δ

(

t − t̂x(τ, ω)
)

dτ (15)

where t̂x(t, ω) corresponds to a group-delay estimator related to the time
reassignment operator given by Eq. (3).
The original signal can thus be reconstructed using the following exact formula:

x(t) =
1

2πFh(0)∗

∫∫

R2
T

h
x (τ, ω) e

jωt
dτdω (16)
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Numerical results

SNR=25.00 dB, L=8.00

50 100 150 200 250 300 350 400 450 500

time samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n
o
rm

a
liz

e
d
 f
re

q
u
e
n
c
y

(e) |Fh
x (t, ω)|2

SNR=25.00 dB, L=8.00

50 100 150 200 250 300 350 400 450 500

time samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n
o
rm

a
liz

e
d
 f
re

q
u
e
n
c
y

(f) |Th
x (t, ω)|2

Perfect localization of the 2 impulses

Poor localization of the sinusoidal components

13/25



Introduction
Time-reassigned synchrosqueezing

Application to Draupner wave analysis
Conclusion

Rationale
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Signal model

x(t) = e
λx (t)+jφx (t) (17)

with λx(t) = lx + µx t + νx
t2

2
(18)

and φx(t) = ϕx + ωx t + αx
t2

2
(19)

where λx(t) and φx(t) respectively stand for the log-amplitude and phase and
with qx = νx + jαx and px = µx + jωx .

For such a signal, it can be shown that [Fourer et al., 2017]:

ωx = Im(ω̃x (t,ω) − qx t̃x (t,ω)) = ω̂x (t,ω) − Im(qx t̃x (t,ω)) (20)
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Enhanced group-delay estimation

The new proposed second-order horizontal synchrosqueezing consists in moving
Fh

x (t,ω) from the point (t,ω) to the point (t
(2)
x ,ω) located on the instantaneous

frequency curve, i.e. such that φ̇(t
(2)
x )= dφx

dt
(t

(2)
x ) = ωx + αx t

(2)
x = ω.

This leads to:

t
(2)
x =

ω − ωx

αx

= t̂x (t,ω) +
ω − ω̂x (t,ω)

αx

+
νx

αx

Im(t̃x (t,ω)) (21)

which can be estimated by:

t̂
(2)
x (t,ω)=

{

ω−ω̂x (t,ω)+Im(q̂x (t,ω) t̃x (t,ω))
α̂x (t,ω)

if α̂x (t,ω) 6=0

t̂x (t, ω) otherwise
(22)

where q̂x (t,ω) = ν̂x (t,ω) + jα̂x (t,ω) is an unbiased estimator of qx .
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Implementation considerations

In [Fourer et al.,2017] and [Fourer et al., 2018] we introduced two families of unbiased
estimators called (tn) and (ωn) involving n-order derivatives (n≥2) with respect to
time (resp. to frequency) which enable to compute Eqs. (22).

q̂
(tn)
x (t, ω) =

FDnh
x Fh

x − FDn−1h
x FDh

x

FT h
x FDn−1h

x − FT Dn−1h
x Fh

x

(23)

q̂
(ωn)
x (t, ω) =

(FT n−1Dh
x + (n−1)FT n−2h

x )Fh
x − FT n−1h

x FDh
x

FT n−1h
x FT h

x − FT nh
x Fh

x

(24)

with Dnh(t) = dnh
dtn

(t) and T nh(t) = tnh(t).

discrete-time reformulations of our previously described expressions combined

with the rectangle approximation method. Thus Fh
x [k,m]≈Fh

x (
k
Fs

, 2πmFs

M
),

where Fs denotes the sampling frequency, k ∈ Z is the time sample index and
m ∈ M is the discrete frequency bin.

The number of frequency bins M is chosen as an even number such as
M = [−M/2 + 1;M/2]

Our implementation uses a Gaussian window expressed as h(t)= 1√
2πT

e
− t2

2T2

where T is the time-spread of the window which can be related to L = TFs .
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Comparative numerical results 1/2
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(g) spectrogram
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Comparative numerical results 2/2
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(j) spectrogram
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(k) synchrosqueezing
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(l) second-order vertical syn-
chrosqueezing
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Rationale
Second-order time-reassigned synchrosqueezing

Signal reconstruction

Whole signal reconstruction expressed in terms of Reconstruction quality Factor
(RQF):

RQF = 10 log10

(
∑

n |x [n]|
2

∑

n |x [n]− x̂ [n]|2

)

(25)

Method RQF (dB)

STFT 269.27
reassignment N/A
classical synchrosqueezing 35.89
second-order vertical synchrosqueezing 23.80
time-reassigned synchrosqueezing 116.67
second-order time-reassigned synchrosqueezing 116.67
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Draupner wave recording

We consider a possible freak wave event measured in the North Sea on the
Draupner Platform the 1st of january 1995.
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Draupner wave signal [Haver, 2004]

The signal corresponds to the sea surface elevation deduced from the
measures provided by a wave sensors consisting of a down-looking laser.
The sampling frequency of this signal is Fs = 2.13 Hz and the duration is
20 minutes.
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Time-frequency representations
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(w) second-order horizontal
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Impulses detection

Proposed Saliency function

Defined as the root mean square of the marginal over frequency band Ω = [0.4; 1] Hz
of the signal energy contained in the considered time-frequency representation.

G(t) =

(∫

Ω
|TFRh

x (t, ω)|
2dω

) 1
2
. (26)
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Figure : Result provided using the second-order horizontal synchrosqueezing.
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Impulses disentangling

A binary masked version of the transform Sh
x (t, ω) can thus be computed using G(t)

as:

Ŝ(t, ω) =

{

Sh
x (t, ω) if G(t) > Γ

0 otherwise
. (27)

where Γ is a defined threshold.
Our numerical computation uses Γ = 3.37 which corresponds to 5 times the mean
value of G(t).
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Figure : Draupner signal and recovered waveform of its impulsive components.
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Contributions summary

A novel horizontal synchrosqueezing method based on an enhanced
group-delay estimator.

Efficient computation from the STFT using specific analysis windows.

New applicative results based on the Draupner wave signal.

Matlab code freely available on IEEE Code Ocean at: http://fourer.fr/hsst
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