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Introduction

We consider an observed multi-component signal (MCS) made of K
superimposed components:

x(n) =
K−1∑
k=0

xk(n) , with xk(n) = αk(n) e
2πjφk (n)

M , (1)

with j2 = −1, time instant n ∈ J0,N − 1K and M the number of considered
frequency bins.

αk(n) the Instantaneous Amplitude (IA) and φk(n) the instantaneous phase.

φ′k(n) the Instantaneous Frequency (IF) defined as the discretized derivative of
φk with respect to time.
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Problem statement

Goals:

Disentengling the signal components (modes)

IF and IA parameters estimation

Proposed approach: Time-frequency Analysis

Efficient and intuitive framework based on the Short-Time Fourier
Transform (STFT) which represents the signal in a time-frequency plane.

Allows to observe the IF trajectory of each mode as a ridge.

Challenges

Large variety of real-world signals (amplitude, modulation rate,. . . ).

Presence of spurious noise.

Overlapping components.
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Observation

The STFT of x , using an analysis window θ:

F θx (n,m) =
+∞∑

l=−∞
x(l)θ(n − l)∗ e−j 2πlm

M (2)

with m ∈ {0, 1, . . . ,M − 1} and z∗ being the complex conjugate of z.

Approximation

Let S be an RM×N matrix representing the spectrogram of x :

[S]n,m = |F θx (n,m)|2 ≈
K−1∑
k=0

|xk(n)|2
∣∣Fθ (m − φ′k(n))∣∣2 (3)

where Fθ(m) = 1
M

∑
l∈Z

θ(l) e−j 2πlm
M .

The n-th spectrogram column is denoted as follows:

[S]n,: = sn = [sn,0, . . . , sn,M−1]
> ∈ RM

+ (4)
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Proposed finite rate of innovation (FRI) model

sn,m :=
K−1∑
k=0

(αk(n))
2g(m − φ′k(n)) (5)

with g(m) = |Fθ(m)|2.

Eq. (5) can be viewed as a field of Dirac Pulses (DPs) expressed as:

fn(m) =

K−1∑
k=0

(αk(n))2δ
(

m − φ′k(n)
M

)
(6)

where the Dirac distribution is convolved with a known kernel g .
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Model properties - [1]Vetterli et al. Sampling signals with finite rate of innovation. 2002

sn can be reworded using the inverse DFT of g(m − φ′k(n)) as [1]:

sn,m =

K−1∑
k=0

(αk(n))2
∞∑

λ=−∞
Fg (λ) ej

2πλ(m−φ′k (n))
M

=
∞∑

λ=−∞
Fg (λ)

K−1∑
k=0

(αk(n))2 e−j
2πλφ′k (n)

M

︸ ︷︷ ︸
Ffn (λ)

ej 2πλm
M

≈
M0∑

λ=−M0

Fg (λ)Ffn (λ) e
j 2πλm

M .

(7)

Matrix-wise system (after bandlimited approximation)

sn = VDgzn ⇔ zn = D−1
g V †sn (8)

zn = [Ffn
(−M0), Ffn

(−M0+1), · · · , Ffn
(M0)]

T .

[V ]m,λ = ej
2πmλ

M is a Vandermonde Fourier matrix of size M × (2M0 + 1).

V† is a pseudo-inverse of V (eg. (VT V )−1VT ).

Dg is diagonal and gathers the Fourier coefficients of Fg (λ) in [−M0,M0 ].
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Pulses location estimation using the Prony method

Principle: estimating the filter h that annihilates Ffn :

(Ffn ? h)(l) =
K−1∑
k=0

(αk(n))
2 e−j

2πlφ′k (n)
M H

(
e−j

2πφ′k (n)
M

)
= 0 (9)

with H(z) =
∑

i∈Z h(i)z−i whose the roots are e−j
2πφ′k (n)

M .

Yule-Walker system [2]

Assuming h(0) = 1, h can be estimated solving the following linear system which has
a unique solution if M0 ≥ 2K :

Ffn (0) · · · Ffn (−K+1)
Ffn (1) · · · Ffn (−K+2)

...
. . .

...
Ffn (K−1) · · · Ffn (0)


︸ ︷︷ ︸

A


h(1)
h(2)
...

h(K)

=−


Ffn (1)
Ffn (2)

...
Ffn (K)

 (10)

[2] T. Blu and P. L. Dragotti and M. Vetterli and P. Marziliano and L. Coulot. Sparse

sampling of signal innovations, 2008.
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IF estimation

Classical approach

FRI Prony method

Accurate but sensitive to noise

Not applicable for real-world signals

Total Least-Squares (TLS) approach

Minimizes ‖Ah‖2 under the constraint ‖h‖2 = 1.

Inverting the Vandermonde matrix becomes an ill-posed problem.

h does not annihilate Ffn anymore.

Can be solved using the Singular Values Decomposition (SVD) of A, h
being the eigenvector associated with the smallest eigenvalue.
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IA estimation

Classical FRI method
W0,0 · · · W0,K−1
W1,0 · · · W1,K−1
...

. . .
...

WK−1,0 · · · WK−1,K−1




(α0(n))2

(α1(n))2

...
(αK−1(n))

2

=


Ffn (0)
Ffn (1)

...
Ffn (K−1)

 (11)

where Wl,k = e−j
2πlφ′k (n)

M . Least Squares estimation:

α̂
(LS)
k (n) = argmin

αk (n)

∑
|λ|≤M0

∣∣∣∣∣Ffn (λ)−
K−1∑
k=0

(αk (n))2 e−j
2πλφ′k (n)

M

∣∣∣∣∣
2

. (12)

Proposed method

α̂k(n) =

∣∣∣∣∣ Fθx (n,mk)

Fθ(mk − φ′k(n))

∣∣∣∣∣ (13)

with mk ∈ {0, 1, · · · ,M − 1} being the nearest integer frequency bin (on the grid)
from φ′k(n)
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STFT/SST Recursive implementation - [3] Fourer, Auger, Flandrin. ICASSP 2016

allows real-time and filter-bank-based signal processing applications

use of a specific causal analysis window related to an IIR filter

θp(n) =
np−1

Lp(p − 1)!
e−n/LU(n) (14)

where p is the filter order, L the spread of the analysis window and U(n) the
Heaviside function.

As a results: g(m) = |Fθp (m)|2 =

(
1+

(
2πmL

M

)2
)−p

(15)

with Fθp (m) = (1+ j 2πmL
M )−p .

Thus, Fθpx (n,m) = yp(n,m) ej 2πnm
M can be computed recursively using:

yp(n,m) =

p−1∑
i=0

bi x(n − i)−
p∑

i=1

ai yp(n − i ,m) (16)

ai and bi being the filter coefficients resulting from the z-transform of the Infinite
Impulse Response (IIR) filter θp(n) ej 2πnm

M .
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Results

Experiments

Synthetic (3-components signal)
and real data.

Comparison with various
approaches [4][5][6][7]

IF assessed with RMSE
IA assessed with RMAE.

White Gaussian noise with various
Signal-to-noise ratio (SNR).
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[4] E. Brevdo and N. S. Fuckar and G. Thakur and H. T. Wu. The synchrosqueezing
algorithm: a robust analysis tool for signals with time-varying spectrum, 2011.
[5] Q. Legros, D. Fourer. Pseudo-Bayesian Approach for Robust Mode Detection and
Extraction Based on the STFT, 2023.
[6] N. Laurent and S. Meignen. A Novel Ridge Detector for Nonstationary MCS:
Development and Application to Robust Mode Retrieval, 2021.
[7] Q. Legros and D. Fourer and S. Meignen and M. A. Colominas. Instantaneous
Frequency and Amplitude Estimation in Multicomponent Signals Using an EM-Based
Algorithm, 2024.
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Comparative Results - IF estimation
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Comparative Results - IA estimation

-20 -10 0 10 20

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

R
M

A
E

EM

PB

FRI LS

FRI TLS (prop.)

FRI SST (prop.)

Recursive FRI (prop.)

Relative Mean Absolute Error: RMAE(α, α̂) = 1
NK
∑K−1

k=0
∑N−1

n=0 |αk(n)− α̂k(n)|

14/18



Observation model
Estimation strategy

Numerical results
Conclusion

Results - Computation times

Matlab R2023b

Intel(R) Core(TM) i7-12700H @ 2.30 GHz

Table : Computation time expressed in seconds for synthetic data analysis, averaged
over 50 realizations.

M 500 1000 2000
Brevdo 0.13 0.14 0.18
EM 6.93 29.36 116.42
PB 0.23 0.36 0.61
RD 0.41 0.54 1.20
FRI TLS (proposed) 0.12 0.12 0.2
Recursive FRI (proposed) 0.12 0.13 0.13
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Real-world speech signal analysis
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Conclusions and perspectives

Conclusions

A novel observation model for IF and IA estimation of modes within a
multicomponent signal in the presence of noise.

Time-independent estimation allows recursive implementation.

Computationally light and robust to noise.

Future works

Overlapping components: constraining the problem

Close ridges, interference : spatial regularization.
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Thanks for your attention !
Codes available on GitHub

https://github.com/QuentinLEGROS/EUSIPCO2024/

quentin.legros@univ-orleans.fr - dominique.fourer@univ-evry.fr
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