

Estimation of Instantaneous Frequency and Amplitude of Multi-Component Signals using Sparse Modeling of Signal Innovation

Quentin Legros ¹ Dominique Fourer ²

¹Laboratoire PRISME, Polytech Orléans ²Laboratoire IBISC, Université d'Évry Paris-Saclay

August 28, 2024

Introduction

We consider an observed multi-component signal (MCS) made of K superimposed components:

$$x(n) = \sum_{k=0}^{K-1} x_k(n) \quad \text{, with } x_k(n) = \alpha_k(n) e^{\frac{2\pi j \phi_k(n)}{M}}, \quad (1)$$

- with $j^2 = -1$, time instant $n \in [[0, N 1]]$ and M the number of considered frequency bins.
- $\alpha_k(n)$ the Instantaneous Amplitude (IA) and $\phi_k(n)$ the instantaneous phase.
- $\phi'_k(n)$ the Instantaneous Frequency (IF) defined as the discretized derivative of ϕ_k with respect to time.

Problem statement

Goals:

- Disentengling the signal components (modes)
- IF and IA parameters estimation

Proposed approach: Time-frequency Analysis

- Efficient and intuitive framework based on the Short-Time Fourier Transform (STFT) which represents the signal in a time-frequency plane.
- Allows to observe the IF trajectory of each mode as a ridge.

Challenges

- Large variety of real-world signals (amplitude, modulation rate,...).
- Presence of spurious noise.
- Overlapping components.

2 Estimation strategy

Observation

The STFT of x, using an analysis window θ :

$$F_{x}^{\theta}(n,m) = \sum_{l=-\infty}^{+\infty} x(l)\theta(n-l)^{*} \mathbf{e}^{-j\frac{2\pi lm}{M}}$$
(2)

with $m \in \{0, 1, \dots, M-1\}$ and z^* being the complex conjugate of z.

Approximation

Let **S** be an $\mathbb{R}^{M \times N}$ matrix representing the spectrogram of x:

$$[\mathbf{S}]_{n,m} = |F_{x}^{\theta}(n,m)|^{2} \approx \sum_{k=0}^{K-1} |x_{k}(n)|^{2} |F_{\theta}(m-\phi_{k}'(n))|^{2}$$
(3)

where $F_{\theta}(m) = \frac{1}{M} \sum_{l \in \mathbb{Z}} \theta(l) \, \mathbf{e}^{-j \frac{2\pi l m}{M}}.$

The *n*-th spectrogram column is denoted as follows:

$$[\boldsymbol{S}]_{\boldsymbol{n},:} = \boldsymbol{s}_{\boldsymbol{n}} = [\boldsymbol{s}_{\boldsymbol{n},0},\ldots,\boldsymbol{s}_{\boldsymbol{n},\boldsymbol{M}-1}]^{\top} \in \mathbb{R}^{\boldsymbol{M}}_{+}$$
(4)

Proposed finite rate of innovation (FRI) model

$$s_{n,m} := \sum_{k=0}^{K-1} (\alpha_k(n))^2 g(m - \phi'_k(n))$$
(5)

with $g(m) = |F_{\theta}(m)|^2$.

Eq. (5) can be viewed as a field of Dirac Pulses (DPs) expressed as:

$$f_n(m) = \sum_{k=0}^{K-1} (\alpha_k(n))^2 \delta\left(\frac{m - \phi'_k(n)}{M}\right)$$
(6)

where the Dirac distribution is convolved with a known kernel g.

Model properties - [1]Vetterli et al. Sampling signals with finite rate of innovation. 2002

 \boldsymbol{s}_n can be reworded using the inverse DFT of $g(m-\phi_k'(n))$ as [1]:

$$s_{n,m} = \sum_{k=0}^{K-1} (\alpha_k(n))^2 \sum_{\lambda=-\infty}^{\infty} F_g(\lambda) e^{j\frac{2\pi\lambda(m-\phi'_k(n))}{M}}$$
$$= \sum_{\lambda=-\infty}^{\infty} F_g(\lambda) \underbrace{\sum_{k=0}^{K-1} (\alpha_k(n))^2 e^{-j\frac{2\pi\lambda\phi'_k(n)}{M}}}_{F_{f_n}(\lambda)} e^{j\frac{2\pi\lambda m}{M}}$$
(7)

$$\approx \sum_{\lambda = -M_0}^{M_0} F_g(\lambda) F_{f_n}(\lambda) \, \mathrm{e}^{i \frac{2\pi \lambda m}{M}}$$

Matrix-wise system (after bandlimited approximation)

$$\boldsymbol{s}_n = \boldsymbol{V} \boldsymbol{D}_g \boldsymbol{F}_n \Leftrightarrow \boldsymbol{F}_n = \boldsymbol{D}_g^{-1} \boldsymbol{V}^{\dagger} \boldsymbol{s}_n \tag{8}$$

•
$$F_n = [F_{f_n}(-M_0), F_{f_n}(-M_0+1), \cdots, F_{f_n}(M_0)]^T$$
.

- $[V]_{m,\lambda} = e^{j \frac{2\pi m \lambda}{M}}$ is a Vandermonde Fourier matrix of size $M \times (2M_0 + 1)$.
- V^{\dagger} is a pseudo-inverse of V (eg. $(V^T V)^{-1} V^T$).
- D_g is diagonal and gathers the Fourier coefficients of $F_g(\lambda)$ in $[-M_0, M_0]$.

Pulses location estimation using the Prony method

Principle: estimating the filter h that annihilates F_{f_n} :

$$(F_{f_n} \star h)(l) = \sum_{k=0}^{K-1} (\alpha_k(n))^2 e^{-j \frac{2\pi l \phi_k'(n)}{M}} H\left(e^{-j \frac{2\pi \phi_k'(n)}{M}}\right) = 0$$
(9)

with $H(z) = \sum_{i \in \mathbb{Z}} h(i) z^{-i}$ whose the roots are $\mathbf{e}^{-j \frac{2\pi \phi'_k(n)}{M}}$.

Yule-Walker system [2]

Assuming h(0) = 1, **h** can be estimated solving the following linear system which has a unique solution if $M_0 \ge 2K$:

$$\underbrace{\begin{pmatrix}F_{f_{n}}(0) & \cdots & F_{f_{n}}(-\kappa+1)\\F_{f_{n}}(1) & \cdots & F_{f_{n}}(-\kappa+2)\\\vdots & \ddots & \vdots\\F_{f_{n}}(\kappa-1) & \cdots & F_{f_{n}}(0)\end{pmatrix}}_{\boldsymbol{A}} \begin{pmatrix}h(1)\\h(2)\\\vdots\\h(\kappa)\end{pmatrix} = -\begin{pmatrix}F_{f_{n}}(1)\\F_{f_{n}}(2)\\\vdots\\F_{f_{n}}(\kappa)\end{pmatrix}$$
(10)

[2] T. Blu and P. L. Dragotti and M. Vetterli and P. Marziliano and L. Coulot. Sparse sampling of signal innovations, 2008.

IF estimation

Classical approach

FRI Prony method

- Accurate but sensitive to noise
- Not applicable for real-world signals

Total Least-Squares (TLS) approach

Minimizes $||\mathbf{A}h||^2$ under the constraint $||h||_2 = 1$.

- Inverting the Vandermonde matrix becomes an ill-posed problem.
- h does not annihilate F_{f_n} anymore.
- Can be solved using the Singular Values Decomposition (SVD) of **A**, **h** being the eigenvector associated with the smallest eigenvalue.

IA estimation

Classical FRI method

$$\begin{pmatrix}
W_{0,0} & \cdots & W_{0,K-1} \\
W_{1,0} & \cdots & W_{1,K-1} \\
\vdots & \ddots & \vdots \\
W_{K-1,0} & \cdots & W_{K-1,K-1}
\end{pmatrix} \begin{pmatrix}
(\alpha_0(n))^2 \\
(\alpha_1(n))^2 \\
\vdots \\
(\alpha_{K-1}(n))^2
\end{pmatrix} = \begin{pmatrix}
F_{f_n}(0) \\
F_{f_n}(1) \\
\vdots \\
F_{f_n}(K-1)
\end{pmatrix}$$
(11)
where $W_{l,k} = e^{-j \frac{2\pi l \phi'_k(n)}{M}}$. Least Squares estimation:
 $\hat{\alpha}_k^{(LS)}(n) = \underset{\alpha_k(n)}{\operatorname{argmin}} \sum_{|\lambda| \le M_0} \left| F_{f_n}(\lambda) - \sum_{k=0}^{K-1} (\alpha_k(n))^2 e^{-j \frac{2\pi \lambda \phi'_k(n)}{M}} \right|^2.$ (12)

Proposed method

$$\hat{\alpha}_{k}(n) = \left| \frac{F_{x}^{\theta}(n, m_{k})}{F_{\theta}(m_{k} - \phi_{k}'(n))} \right|$$
(13)

with $m_k \in \{0,1,\cdots,M-1\}$ being the nearest integer frequency bin (on the grid) from $\phi_k'(n)$

STFT/SST Recursive implementation - [3] Fourer, Auger, Flandrin. ICASSP 2016

- allows real-time and filter-bank-based signal processing applications
- use of a specific causal analysis window related to an IIR filter

$$\theta_{p}(n) = \frac{n^{p-1}}{L^{p}(p-1)!} \,\mathbf{e}^{-n/L} U(n) \tag{14}$$

where p is the filter order, L the spread of the analysis window and U(n) the Heaviside function.

As a results:
$$g(m) = |F_{\theta_p}(m)|^2 = \left(1 + \left(\frac{2\pi mL}{M}\right)^2\right)^{-p}$$
 (15)

with $F_{\theta_p}(m) = (1 + j\frac{2\pi mL}{M})^{-p}$. Thus, $F_x^{\theta_p}(n,m) = y_p(n,m) e^{j\frac{2\pi nm}{M}}$ can be computed recursively using:

$$y_{p}(n,m) = \sum_{i=0}^{p-1} b_{i} x(n-i) - \sum_{i=1}^{p} a_{i} y_{p}(n-i,m)$$
(16)

 a_i and b_i being the filter coefficients resulting from the z-transform of the Infinite Impulse Response (IIR) filter $\theta_p(n) e^{j\frac{2\pi nm}{M}}$.

Results

- [4] E. Brevdo and N. S. Fuckar and G. Thakur and H. T. Wu. The synchrosqueezing algorithm: a robust analysis tool for signals with time-varying spectrum, 2011.
- [5] Q. Legros, D. Fourer. Pseudo-Bayesian Approach for Robust Mode Detection and Extraction Based on the STFT, 2023.
- [6] N. Laurent and S. Meignen. A Novel Ridge Detector for Nonstationary MCS: Development and Application to Robust Mode Retrieval, 2021.
- [7] Q. Legros and D. Fourer and S. Meignen and M. A. Colominas. Instantaneous Frequency and Amplitude Estimation in Multicomponent Signals Using an EM-Based Algorithm, 2024.

Comparative Results - IF estimation

Relative Mean Squared Error: RMSE($\phi', \hat{\phi'}$)= $\sum_{k=0}^{K-1} \sum_{n=0}^{N-1} \frac{|\phi'_k(n) - \hat{\phi}'_k(n)|^2}{M^2}$

Comparative Results - IA estimation

Relative Mean Absolute Error: RMAE($\alpha, \hat{\alpha}$) = $\frac{1}{NK} \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} |\alpha_k(n) - \hat{\alpha}_k(n)|$

Results - Computation times

- Matlab R2023b
- Intel(R) Core(TM) i7-12700H @ 2.30 GHz

Table : Computation time expressed in seconds for synthetic data analysis, averaged over 50 realizations.

Μ	500	1000	2000
Brevdo	0.13	0.14	0.18
EM	6.93	29.36	116.42
PB	0.23	0.36	0.61
RD	0.41	0.54	1.20
FRI TLS (proposed)	0.12	0.12	0.2
Recursive FRI (proposed)	0.12	0.13	0.13

Real-world speech signal analysis

Conclusions and perspectives

Conclusions

- A novel observation model for IF and IA estimation of modes within a multicomponent signal in the presence of noise.
- Time-independent estimation allows recursive implementation.
- Computationally light and robust to noise.

Future works

- Overlapping components: constraining the problem
- Close ridges, interference : spatial regularization.

Thanks for your attention !

Codes available on GitHub https://github.com/QuentinLEGROS/EUSIPC02024/

quentin.legros@univ-orleans.fr - dominique.fourer@univ-evry.fr