

Recursive Versions of the Reassigned Spectrogram and of the Synchrosqueezed STFT

D. Fourer¹ F. Auger¹ P. Flandrin²

¹LUNAM Université (Université de Nantes-IREENA), Saint-Nazaire, France {dominique.fourer,francois.auger}@univ-nantes.fr

²Laboratoire de Physique (CNRS-ENS de Lyon), Lyon, France patrick.flandrin@ens-lyon.fr

I) Introduction

Goals of this study

Computing time-frequency representations that are

candidate for a real-time implementation

► adjustable by the user through a damping parameter µ (Levenberg-Marquardt approach)

• able to extract modes and to reconstruct the signal (synchrosqueezing)

.

Rewording the partial derivatives of the phase

Algorithm implementation for recursive TFR computation

At time index n: 1. Compute the required $y_k^g[n, m]$ using x[n - i] and $y_k[n - j, m]$ with $i \in [0, k - 1], j \in [1, k]$ 2. Compute the other required specific filtered signals $(i.e. y_k^{\mathcal{T}g}, y_k^{\mathcal{D}g}, y_k^{\mathcal{D}\mathcal{T}g}, y_k^{\mathcal{T}^2g} \text{ or } y_k^{\mathcal{D}^2g})$ using y_k^g with different filter orders

based on a filter bank approach

Proposed approach

- use of a particular case of the STFT with a causal, infinite length window function that can be rewritten as a causal IIR recursive filtering
- the algorithmic complexity depends on the filter order and on the analyzed frequency bandwidth

II) Filter-based reassigned and synchrosqueezed STFT

The STFT as a convolution product

The STFT of a signal x using a real-valued analysis window h, denoted $F_x^h(t,\omega) = M_x^h(t,\omega) \mathbf{e}^{j\Phi_x^h(t,\omega)}$ can be related to the linear convolution product between the analyzed signal x and the complex valued impulse response of a bandpass filter $g(t,\omega) = h(t) \mathbf{e}^{j\omega t}$:

 $y_x^g(t,\omega) = \int_{-\infty}^{+\infty} g(\tau,\omega) x(t-\tau) \, d\tau = |y_x^g(t,\omega)| \, \mathbf{e}^{j\Psi_x^g(t,\omega)}$

 $\frac{\partial^2 \Psi_x^g}{\partial t^2}(t,\omega) = \operatorname{Im}\left(\frac{y_x^{\mathcal{D}^2g}(t,\omega)}{y_x^g(t,\omega)} - \left(\frac{y_x^{\mathcal{D}g}(t,\omega)}{y_x^g(t,\omega)}\right)^2\right)$ $\frac{\partial^2 \Psi_x^g}{\partial \omega^2}(t,\omega) = -\operatorname{Im}\left(\frac{y_x^{\mathcal{T}^2g}(t,\omega)}{y_x^g(t,\omega)} - \left(\frac{y_x^{\mathcal{T}g}(t,\omega)}{y_x^g(t,\omega)}\right)^2\right)$

where y_x^g , $y_x^{\mathcal{T}g}$, $y_x^{\mathcal{D}g}$, $y_x^{\mathcal{D}\mathcal{T}g}$, $y_x^{\mathcal{T}^2g}$ and $y_x^{\mathcal{D}^2g}$ are the outputs of the filters using respectively the impulse responses $g(t,\omega)$, $\mathcal{T}g = t g(t,\omega)$, $\mathcal{D}g(t,\omega) = \frac{\partial g}{\partial t}(t,\omega)$, $\mathcal{D}\mathcal{T}g(t,\omega) = \frac{\partial}{\partial t}(t g(t,\omega))$, $\mathcal{T}^2g(t,\omega) = t^2g(t,\omega)$ and $\mathcal{D}^2g(t,\omega) = \frac{\partial^2 g}{\partial t^2}(t,\omega)$.

Rewording the synchrosqueezed STFT

 $y_{x}^{g} \text{ admits the following signal reconstruction formula}$ $x(t-t_{0}) = \frac{1}{h(t_{0})} \int_{-\infty}^{+\infty} y_{x}^{g}(t,\omega) \mathbf{e}^{-j\omega t_{0}} \frac{d\omega}{2\pi}, \text{ when } h(t_{0}) \neq 0.$ (5)
This leads to the synchrosqueezed STFT [5]: $Sy_{x}^{g}(t,\omega) = \int_{\mathbb{R}} y_{x}^{g}(t,\omega') \mathbf{e}^{-j\omega' t_{0}} \delta\left(\omega - \hat{\omega}(t,\omega')\right) d\omega' \quad (6)$ $LMSy_{x}^{g}(t,\omega) \text{ is obtained by replacing } \hat{\omega} \text{ by } \tilde{\omega}. \text{ A sharpen time-frequency representation is provided by } |Sy_{x}^{g}(t,\omega)|^{2}.$

3. Compute the reassignment operators \hat{n}, \hat{m} (resp. \tilde{n}, \tilde{m})

4. If n̂ ≤ n (resp. ñ ≤ n) then update TFR[n̂, m] else store the triplet (y^g_k[n, m], n̂, m) into a list
5. Update TFR[n, m] using all previously stored triplets such as n̂ = n (resp. ñ = n) and remove them from the list

IV) Numerical results

Resulting time-frequency representations

$$= F_x''(t,\omega) \mathbf{e}^{j\omega t} = M_x''(t,\omega) \mathbf{e}^{j(\psi_x(t,\omega)+\omega t)}$$

thus
$$M_x^h(t,\omega) = |y_x^g(t,\omega)| \text{ and } \Phi_x^h(t,\omega) = \Psi_x^g(t,\omega) - \omega t.$$

Rewording the reassignment operators of the spectrogram

According to [1], the spectrogram reassignment operators can be reformulated using the phase of $y_x^g(t,\omega)$, denoted $\Psi_x^g(t,\omega) = \Phi_x^h(t,\omega) + \omega t$

$$\hat{t}(t,\omega) = -rac{\partial \Phi_x^h}{\partial \omega}(t,\omega) = t - rac{\partial \Psi_x^g}{\partial \omega}(t,\omega),$$

 $\hat{\omega}(t,\omega) = \omega + rac{\partial \Phi_x^h}{\partial t}(t,\omega) = rac{\partial \Psi_x^g}{\partial t}(t,\omega).$

The reassigned spectrogram is expressed as

 $\mathsf{RSP}(t,\omega) = \iint_{\mathbb{R}^2} |y_x^g(t',\omega')|^2 \delta(t - \hat{t}(t',\omega'))$ $\delta(\omega - \hat{\omega}(t',\omega')) \, dt' d\omega' \, (3)$

where $\delta(t)$ denotes the Dirac distribution.

Rewording the Levenberg-Marquardt reassignment [2] The signal can be reconstructed from $Sy_x^g(t, \omega)$ as

$$\hat{x}(t-t_0) = \frac{1}{h(t_0)} \int_{-\infty}^{+\infty} \operatorname{Sy}_x^g(t,\omega) \frac{d\omega}{2\pi}$$

(7)

III) Towards a recursive implementation

Recursive implementation [3]

 y_x^g can be recursively implemented using

$$h_{k}(t) = \frac{t^{k-1}}{T^{k}(k-1)!} \mathbf{e}^{-t/T} U(t), \qquad (8)$$
$$g_{k}(t,\omega) = h_{k}(t) \, \mathbf{e}^{j\omega t} = \frac{t^{k-1}}{T^{k}(k-1)!} \, \mathbf{e}^{pt} U(t) \qquad (9)$$

with $p = -\frac{1}{T} + j\omega$, $k \ge 1$ being the filter order, T the time spread of the window and U(t) the Heaviside step function. The time derivatives of $g_k(t,\omega)$ or its products by t and t^2 can be expressed as a linear combination of $g_k(t,\omega)$ with different filter orders.

Discretization using the impulse invariance

Signal reconstruction quality

Using the discrete-time version of Eq. (7) with $n_0 = t_0/T_s$.

	(a)	<i>n</i> ₀	8	18	26	28	30
	(a)	RQF (dB)	9.79	24.17	26.77	26.82	26.73
	(b)	М	100	200	600	1000	2400
		RQF (dB)	20.56	24.90	29.48	30.50	30.87
	(c)	μ	0.30	0.80	1.30	1.80	2.30
		RQF (dB)	20.83	27.28	29.68	30.35	30.90

Signal Reconstruction Quality Factor $RQF = 10 \log_{10} \left(\frac{\sum_n |x[n]|^2}{\sum_n |x[n] - \hat{x}[n]|^2} \right)$, of the recursive synchrosqueezed STFT computed for k = 5, L = 7 at SNR = 45 dB. Line (a), computed for M = 300, Line (b) and Line (c), computed for $n_0 = 28$ and M = 300.

Bibliography

[1] F. Auger and P. Flandrin, "Improving the readibility of time-frequency and time-scale representations by the reassignment method", IEEE TSP. vol. 43. no. 5. pp. 1068–1089. May 1995.

Hence, the Levenberg-Marquardt reassigned spectrogram (LMRSP (t, ω)) is obtained by replacing $(\hat{t}, \hat{\omega})$ by $(\tilde{t}, \tilde{\omega})$ in Eq. (3).

method [4] $G_{k}(z,\omega) = T_{s}\mathcal{Z} \{g_{k}(t,\omega)\} = \frac{\sum_{i=0}^{k-1} b_{i}z^{-i}}{1+\sum_{i=1}^{k} a_{i}z^{-i}} \quad (10)$ with $b_{i} = (L^{k}(k-1)!)^{-1}B_{k-1,k-i-1}\alpha^{i}, \alpha = \mathbf{e}^{pT_{s}},$ $L = T/T_{s}, a_{i} = A_{k,i}(-\alpha)^{i}, T_{s}$ being the sampling
period. $B_{k,i} = \sum_{j=0}^{i} (-1)^{j}A_{k+1,j}(i+1-j)^{k}$ denotes the
Eulerian numbers and $A_{k,i}$ the binomial coefficients.
Hence, using $y_{k}[n,m] \approx y_{x}^{g_{k}}(nT_{s}, \frac{2\pi m}{MT_{s}})$ with $n \in \mathbb{Z}$ and m = 0, 1, ..., M-1, we obtain $k-1 \qquad k$

$$y_k[n,m] = \sum_{i=0}^{\infty} b_i x[n-i] - \sum_{j=1}^{\infty} a_j y_k[n-j,m] \quad (11)$$

[2] F. Auger, E. Chassande-Mottin and P. Flandrin, "Making reassignment adjustable : The Levenberg-Marquardt approach", Proc. IEEE ICASSP'12. pp 3889–3892. March, 2012.
[3] G.K. Nilsen, "Recursive Time-Frequency Reassignment", IEEE TSP. vol. 57. no. 8. pp 3283–3287. August, 2009.
[4] L.B. Jackson, "A correction to impulse invariance", IEEE Signal Process. Lett., vol. 7, no. 10, pp. 237–275, October 2000.
[5] F. Auger, P. Flandrin, Y-T Lin, S. McLaughlin, S. Meignen, T. Oberlin, and H-T. Wu, "Time-frequency reassignment and synchrosqueezing : an overview". IEEE Signal Process. Mag., vol. 30, no. 6, pp. 32–41, November 2013.

This work was supported by the French National Research Agency, as part of the ASTRES project (http://www.ens-lyon.fr/PHYSIQUE/Equipe3/ANR_ASTRES/), ANR-13-BS03-0002-01.

2)