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Abstract

The French project called ASTRES (Analysis-Synthesis-Transformation by Reassignment, EMD and Syn-
chrosqueezing) project and its related toolbox aim at offering advanced tools designed for processing
non-stationary and multicomponent signals. The goal of this toolbox is to share with the scientific
community Matlab implementations of new (or very recent) methods for analysis, synthesis and trans-
formation of any signal made of physically meaningful components (e.g. sinusoids, trends or noise). The
proposed techniques contain several of our recent contributions which are now unified into the same
framework and strengthened from a theoretical point of view. They can provide efficient time-frequency
or time-scale representations and allow elementary components extraction.
Each proposed method is numerically illustrated on real-world signals:
I the gravitational wave signal Livingston GW150914,
I a multicomponent audio signal of a recorded cello.

Overview of the toolbox

https://github.com/dfourer/ASTRES_toolbox
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Short-Time Fourier Transform (STFT)

STFT and spectrogram
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STFT of a signal x using a differentiable analysis window h:

F h
x (t, ω) =

∫
R

x(u)h(t − u)∗ e−jωu du.

I Allows a recursive implementation using a specific analysis window [1]:
hk(t)= tk−1

T k(k−1)! e−t/T U(t), k ≥ 1, U(t) being the Heaviside step function and
T a time spread parameter.

Reassigned spectrogram
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reassigned spectrogram, T=0.0223
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RFx(t, ω)

Provides a sharpen (reassigned) time-frequency representation (TFR) thanks to the
reassignment operators (introduced by Kodera et al. in 1976 and generalized by
Auger et Flandrin in 1995).
I The resulting TFR is not reversible.
I The time-frequency localization can be adjusted through a damping parameter

using the Levenberg-Marquardt algorithm [1]

Synchrosqueezed STFT
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Provides thanks to the frequency reassignment operator, a sharpen (with a poorer
localization than reassignment) TFR which admits a signal reconstruction formula.
I The resulting TFR is reversible and allows mode extraction.
I Can also be recursively implemented for real-time computation [1].
I The time-frequency localization can be adjusted through a damping parameter

using Levenberg-Marquardt algorithm [1].

Vertically synchrosqueezed STFT
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Improvement of the localization of the synchrosqueezing method thanks to an en-
hanced instantaneous frequency estimator [4], [5].
I The resulting TFR is reversible and allows mode extraction.
I Better frequency localization than using the classical synchrosqueezed STFT.

Continuous Wavelet Transform (CWT) and S-Transform (ST)

CWT/ST and scalogram/Stockwellogram
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Using the Morlet mother wavelet Ψ(t) = π−1/4
√

T e
−t2
2T2 ejω0t , the CWT is expressed as

MWx(t, ω) =

√
|ω|

ω0T
√
π

∫ +∞

−∞
x(τ) e−

ω2(t−τ)2
2(ω0T )2 e−jω(τ−t) dτ

and the S-transform can now be defined as:

STx(t, ω) =

√
|ω|

2
√
πω0T

e−jωt MWx(t, ω).

Reassigned scalogram/Stockwellogram
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RSTx(t, ω)

Provides a sharpen (reassigned) time-frequency representation (TFR) thanks to ded-
icated reassignment operators (with an elegant formulation expressed in terms of the
original transform using modified mother wavelet functions).
I The resulting TFR is not reversible.
I The time-frequency localization can now also be adjusted through a damping

parameter (as for the STFT) using the Levenberg-Marquardt algorithm [2] [3].
I Both CWT and its reassigned scalogram, can be recursively computed (for

real-time applications) using a specific mother wavelet function [2].

Synchrosqueezed CWT/ST
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As for the STFT, synchrosqueezing provides a sharpen TFR which admits a signal
reconstruction formula.

I The resulting TFR (defined as the squared modulus of the synchrosqueezed
transform) is reversible and allows mode extraction.

I The localization can also be adjusted through a damping parameter [2],[3].

Vertically synchrosqueezed CWT/ST
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Localization improvement of both the synchrosqueezed CWT [6] and the syn-
chrosqueezed ST [3] thanks to a dedicated enhanced instantaneous frequency esti-
mator.

I The resulting TFR (defined as the squared modulus of the synchrosqueezed
transform) is reversible and allows mode extraction.

I Better frequency localization than the classical synchrosqueezed CWT/ST.

Data-driven methods and ridge detection for mode extraction
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Synchrosqueezing + ridge-detection
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I Brevdo et al. ridge detection method based on total variation penalization [5].
I Flandrin method for ridge detection based on spectrogram zeros filtering [6].

Singular Spectrum Analysis (SSA)
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SSA extracted components
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I A new proposed fully automatic SSA method for components extraction [9].
I A new method (recently submitted for publication) called sliding SSA.

Empirical Mode Decomposition (EMD)
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Several recent contributions such as [10] for a theoretical reformulation of the EMD
algorithm and an extension for 2D signals [11].

Conclusion and future work
The French project called ASTRES toolbox was introduced as a collec-
tion of Matlab functions for processing non-stationary and multicom-
ponent signals. This toolbox unifies into the same framework several
recent techniques developed into the ASTRES project. Some methods
are designed for efficient TFRs computation and mode extraction, were
used to provide new results on real world signals. Future work consists in
theoretically strengthening these tools, and new practical applications.
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