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Abstract—The thrombus causing a stroke can be seen on the
susceptibility weighted angiography (SWAN) magnetic resonance
imaging (MRI) sequence. But it is very small and hard to
detect by humans. Up to date the thrombus is identified by
trained human experts. But as stroke needs quick treatment, an
automatic detection of the thrombus would be useful to speed up
the diagnosis of acute stroke. We propose a method for automatic
thrombus detection from SWAN using three separate U-Nets
which work on the axial, coronal and sagittal planes.

Index Terms—Stroke, Thrombus, Deep Learning, MRI, Auto-
matic Segmentation.

I. INTRODUCTION

According to the World Health Organisation, stroke is the
second leading cause of death worldwide. This disease of
the brain is so common, and at the same time so difficult
to treat, that even an entire journal was created exclusively
for research on stroke1. Stroke can be divided into two sub-
types which have a different cause: hemorrhagic stroke and
ischemic stroke. Only the more common ischemic stroke is
considered in the following. In ischemic stroke a blood clot,
the thrombus, blocks an artery in the brain. As a consequence
a part of the brain is cut off from the blood supply and quickly
dies, mainly within the first six hours after stroke onset. The
damaged area is called lesion.

One of the vital parts of stroke diagnosis is the identification
and localisation of the thrombus. Its size and location determ-
ines the prospects of success of possible treatment strategies
[1].

Some semi-automatic methods have been proposed to seg-
ment the thrombus on computed tomography (CT) images of
the brain [2], [3], [4], but they require the user to indicate
the spatial location of the thrombus in the images. To the
best of our knowledge, there is currently no publication
on thrombus segmentation or identification on stroke MRI.
Manually identifying the thrombus on stroke MRI is extremely
difficult, due to its small size and high variability in spacial
location and colour, and thus requires longstanding clinical
experience. Furthermore the treatment decision for a stroke
patient arriving at a hospital needs to be taken fast, as any

1See http://stroke.ahajournals.org/

delay reduces the patient’s chances of survival. A computer
guided assistance in thrombus identification would therefore
be helpful to gain some time in the diagnosis pipeline.

In this paper we propose a method for automatic thrombus
segmentation.

II. METHOD AND MATERIALS

A. Data-Set

The data-set for this retrospective study consists of MRIs
of 61 patients which were treated for stroke at the centre
hospitalier sud-francilien (CHSF). The MRIs were taken upon
the patients’ arrival at the hospital before treatment, which
means in the hyper acute phase of stroke. All patients have
an occlusion in the middle cerebral artery visible on SWAN.
Multiple MRI sequences were available from the CHSF stroke
MRI protocol but as the thrombus can only be seen on
SWAN only the latter was used in the following. SWAN
is a susceptibility weighted imaging sequence tied to the
manufacturer General Electrics. Very similar sequences are
available from all major MRI manufacturers (SWI by Siemens,
SWIp by Phillips, BSI by Hitachi and FSBB by Canon) which
produce almost identical images. Thus we expect our method
to generalise well to MRIs of different manufacturers.

The images are from 1.5T and 3T General Electrics
MRI machines. The SWAN was acquired with an echo
time of 20ms, a repetition time of 48ms and a flip angle
of 20◦. The slice thickness is 2.8mm and the pixel size
0.61mm×1.07mm.

The Thrombus was segmented manually on each SWAN by
at least two experienced neurologists. In total 5 neurologists
carried out segmentations. Their inter-observer agreement was
measured using the dice coefficient [5] and they achieved a
dice of 0.7 with a mean size of 1166 voxels. For such small
volumes this is a very good inter observer agreement.

MRI is a qualitative and no quantitative measurement [6],
i.e. the intensity values and range of repeated measurements of
the same patient are different even though it appears to be the
same image to human eyes. Across patients this variability
is even higher (compare figures 1 a) and c)). Therefore a
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Figure 1. Two examples of the intensity normalisation of the SWAN histogram. In the original histograms a) and c) the location of the peak corresponding
to the normal brain tissue (red line) is noted. Both histograms show this peak, but its location is different. This illustrates why intensity normalisation of MRI
is important. Then the intensity values are divided by the peak intensity value and the normalised histograms b) and d) are obtained. Note that this histogram
shows intensity values of the brain only, the very large peak around zero of the empty space around the head has been removed for readability.

normalisation of the images is necessary to obtain repeatable
results with automatic processing of the images. We normalise
the images such that the value of the normal brain tissue has
always the same value of 1, assuming that intensities of other
parts of the brain behave the same relative to the normal
brain tissue across patients. This is a simplified version of
the method by Nyul et al. [7]. Figure 1 gives an example
of the normalisation process, the location of the peaks was
determined by fitting a mixture of two Gaussians to the
histogram.

B. Objective

Segmentation of the thrombus is a very difficult task.
It cannot be seen directly on the MRI images. Instead its
presence is indicated by a secondary effect. The thrombus is
constituted by clotted blood, which contains a lot of densely
packed haemoglobin proteins which in turn contain iron atoms.
This high local iron concentration causes a defect in the mag-
netic field of the MRI. Most MRI sequences compensate for
magnetic field defects which renders the thrombus invisible.
But on susceptibility weighted imaging sequences this defect is
visible as a dark spot. Usual clinical T2* sequences are of too
low quality, due to time constraints in a stroke scenario, to see



anything but the largest thrombi. Other susceptibility weighted
imaging sequences, for example the SWAN, produce higher
quality images in the same time where even the magnetic
defects of small thrombi are visible.

Thus the objective of our work is to automatically segment
the thrombus on SWAN with the application in the acute phase
of stroke in mind. That means our method should be fast as
well. The task is complicated by the fact that a lot of dark
spots – which look like the thrombus – are visible on SWAN
(see Figure 3.a for a comparison).

C. U-Net

Three years after the breakthrough of convolutional neural
networks for image classification tasks [8], the U-Net [9] set
a new standard for the segmentation of bio-medical images.
It was not the first to be applied to bio-medical image
segmentation tasks, but it combined multiple ideas which made
it outperform its predecessors.

As any classic convolutional neuronal network the U-Net
consecutively down-samples the input image in a compressing
branch. At this stage features at multiple resolutions are
extracted (Figure 2from the left to the middle). The resolution
is halved with a maximum pooling layer and the number of
features at each resolution is doubled with a convolutional
layer.

This is followed by an up-sampling branch which increases
the resolution back to the input space (Figure 2 on the right).
Notably transposed 2D convolutions are used for up-sampling,
i.e. the up-sampling operation is learned. The other notable
part is the use of skip connections which are represented with
grey arrows (Figure 2 and correspond to copy operation). The
idea behind the skip connections is to use the features which
were extracted in the down-sampling branch again during the
up-sampling in order to preserve fine-grained details. This is
one of the key-points which allows this model to produce
segmentations with pixel precision.

And finally the classification layer uses 1× 1 convolutions
adopting the principle of the all convolutional network [10].
This avoids fully connected layers and their drawbacks all
together.

The U-Net has been successful in a number of bio-medical
image segmentation tasks and works well with small data-sets.
We use the (Python) Tensorflow implementation of the U-
Net by Akeret et al. [11].

D. Multi-directional U-Net

The drawback of the native U-Net is that it works on 2D
images only. From our experience a single U-Net alone is
not able to identify the thrombus (compare figure 3, d)). As
confirmed by our medical experts, the 3D context is indeed
very important for identifying a thrombus. The U-Net has been
extended to 3D [12] but the number of parameters and the
evaluation time increases significantly in this case. As we are
looking for a fast method we decided to introduce the 3D
context by using three distinct U-Nets which are trained on
axial, coronal and sagittal slices respectively.

E. Training

The thrombus segmentation task proved to be very difficult,
which made a rather long training scheme necessary. First up,
the models are trained on 64 × 64 patches with a batch size
of 20. To counter the class imbalance, every second image in
a batch shows a thrombus and every other a non thrombus
part of the brain. Data augmentation was done through image
rotations of π, 2π and 3π, random crops and by adding a
small random constant to the pixel values. To further increase
the available training data with this rather small data-set
the models were trained in a leave-one-out cross validation
scheme [13]. That means for each patient a separate model
was trained using all other patients.

The models achieved with this approach detected still too
many false positives. To enhance the models they were re-
trained on an improved data-set, created as follows: the MRIs
of the patients in the training set were classified with the
trained model. Then the non thrombus patches in the training
set are replaced by non thrombus patches which have been
erroneously classified as thrombus by the trained model. The
model was retrained on the improved data-set. Thus the model
is forced to focus on the differences between true thrombus
and false positives. This re-training step greatly reduced the
number of false positives.

According to this schedule three U-Nets were trained for
each patient. The first one was trained on patches from axial
slices, the second was trained on coronal slices and the last
was trained on sagittal slices. The models were trained on a
NVIDIA GTX 1070 GPU and training time was roughly 1
hour per model (183h in total).

F. Label Merging

The three models provide three different scores s1, s2, s3
for each voxel which need to be merged for a final decision.
A simple majority vote would underestimate the size of the
thrombus. Thus the label merging is split into two parts. At
first possible thrombi are extracted and in the second part these
candidates are classified into thrombus and non thrombus.

For the first part a new volume V is created where each
voxel is assigned the maximum max(s1, s2, s3) out of the
three scores. V is then thresholded at a value of 0.4 and the
resulting binary map is divided into connected components.

To decide whether one component should be a thrombus or
not, the scores (s1, s2, s3) are used again. If all three scores
are bigger than 0.7 for one voxel in the component, i.e. s1 >
0.7∧ s2 > 0.7∧ s3 > 0.7, then the component is validated as
a thrombus.

III. RESULTS AND DISCUSSION

We have proposed and evaluated a method for automatic
thrombus segmentation on SWAN capable to find 77.4% of
all thrombi (see table I). The mean dice of the found thrombi
of 0.415 lies below the inter observer agreement of 0.7. But
the dice coefficient is very sensitive to small differences for
objects of the size of a thrombus. For example if the size of
a thrombus is overestimated by displacing the border by one
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Figure 2. The U-Net architecture from [9]. Arrows represent operations and cubes represent feature maps where the height of the cube stands for the number
of feature maps and the width and depth of the cubes for the size of the feature maps.
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Figure 3. A SWAN image a) showing a thrombus. The thrombus location is given by the manual segmentation b). The segmentation from the merged
predictions c) is very close to the ground truth. d), e) and f) are the predictions from the U-Nets in axial, coronal and sagittal direction. Each of the U-Net
identifies a couple of the dark spots as a thrombus. But only the true thrombus is found by all three U-Nets, the other spots are always discarded by at least
one U-Net. It is also visible that the size of the thrombus is underestimated by two of the U-Nets which made the first part of the label merging step necessary.
Figure is best viewed in colour.



Table I
SEGMENTATION RESULTS

Detection Rate 0.774
Mean Dice 0.415
Dice Standard Deviation 0.243
Mean Objects 2.26
Objects Standard Deviation 3.36

pixel outside, the overestimated thrombus is already a few
hundred voxels larger. Given the average size of the thrombi
of 1166, this would be already a significant change in the dice.
So the dice of 0.415 actually means that our method delivers
segmentations which are close to the ground truth, up to a few
pixels.

Given that the thrombus segmentation task is very difficult
and up to now no result on thrombus segmentation from MRI
has been published, this is a good first result. For the future we
plan to improve the detection rate by incorporating additional
clinical data and information about the lesion location into the
model.
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