Nouvelles formules de synthèse de la transformée de Fourier à court terme avec une fenêtre d'analyse modifiée

Dominique Fourer¹, François Auger², Eric Chassande-Mottin³ et Patrick Flandrin⁴

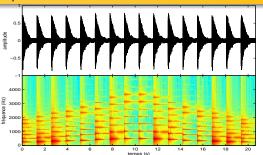
> ¹IBISC - Univ. Evry ²Nantes Université, IREENA, UR 4642 ³Univ. Paris Cité, CNRS, Astroparticule et Cosmologie ⁴Lab. de Physique - ENS de Lyon

> > 29 août 2025

Plan

- Introduction
- Nouvelles formules de synthèse de la TFCT
 - Formules utilisant la marginale en temps
 - Formules utilisant la marginale en fréquence
 - Liens avec les opérateurs de réallocation
- Simulations numériques
- Conclusion

Analyse temps-fréquence



Signal et spectrogramme d'un son de piano jouant la gamme majeure de Do.

Motivation

- Adaptée pour les signaux non stationnaires et multi-composantes
- De nombreuses méthodes efficaces reposent sur la Transformée de Fourier à court terme (TFCT) (estimation de paramètres, modélisation, transformation, compression, etc.)
- Représentation intuitive en audio (notion de fréquence instantannée [Ville 1948])

Transformée de Fourier à court terme (TFCT)

Pour une fenêtre d'analyse $h \in \mathcal{C}^{\infty}(\mathbb{R}) \cap L^2(\mathbb{R})$, on définit la TFCT d'un signal $x \in L^2(\mathbb{R})$ par :

$$F_{x}^{h}(t,\omega) = \int_{\mathbb{R}} x(\tau)h(t-\tau)^{*}e^{-j\omega\tau}d\tau$$
 (1)

$$= \int_{\mathbb{R}} F_{x}(\omega + \Omega) F_{h}(-\Omega)^{*} e^{j\Omega t} \frac{d\Omega}{2\pi}$$
 (2)

avec $j^2=-1$ et z^* le conjugué complexe de z. $F_x(\omega)=\int_{\mathbb{R}}x(t)e^{-j\omega t}dt$ (resp. $F_h(\omega)$) la transformée de Fourier de x (resp. h).

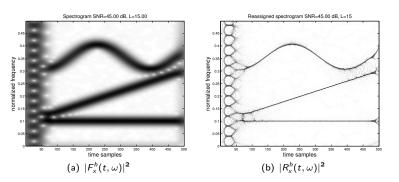
Le spectrogramme de x est donné par $|F_x^h(t,\omega)|^2$.

La réallocation du spectrogramme [Kodera et al., 76] [Auger, Flandrin, 95]

$$\hat{t}(t,\omega) = t - \text{Re}\left(\frac{F_x^{Th}(t,\omega)}{F_v^{h}(t,\omega)}\right)$$
, avec $\mathcal{T}h(t) = t \ h(t)$ (3)

$$\hat{\omega}(t,\omega) = \omega + \operatorname{Im}\left(\frac{F_x^{Dh}(t,\omega)}{F_x^h(t,\omega)}\right) \quad , \text{avec } \mathcal{D}h(t) = \frac{dh}{dt}(t) \tag{4}$$

$$R_{x}(t,\omega) = \iint_{\mathbb{R}^{2}} \left| F_{x}^{h}(\tau,\Omega) \right|^{2} \delta(t - \hat{t}(\tau,\Omega)) \delta(\omega - \hat{\omega}(\tau,\Omega)) d\tau \frac{d\Omega}{2\pi}$$
 (5)



Représentation non inversible.

Reconstruction du signal 1/2

Marginale en temps

Pour une fréquence arbitraire, $\omega_0 \in \mathbb{R}$:

$$\int_{\mathbb{R}} F_{x}^{h}(t,\omega) e^{-j\omega_{0}t} dt = \iint_{\mathbb{R}^{2}} x(\tau)h(t-\tau)^{*}e^{-j\omega_{0}\tau} e^{-j\omega_{0}t} dt d\tau$$

$$= \int_{\mathbb{R}} h(u)^{*}e^{-j\omega_{0}u} du \int_{\mathbb{R}} x(\tau)e^{-j(\omega+\omega_{0})\tau} d\tau$$

$$= F_{h}(-\omega_{0})^{*}F_{x}(\omega+\omega_{0}) \tag{6}$$

Si $\omega_0 = 0$ et $F_h(0) \neq 0$, on a :

$$x(t) = \frac{1}{F_h(0)^*} \iint_{\mathbb{R}^2} F_x^h(\tau, \omega) e^{j\omega t} d\tau \frac{d\omega}{2\pi}$$
 (7)

Reconstruction du signal 2/2

Marginale en fréquence

Pour un instant arbitraire, $t_0 \in \mathbb{R}$:

$$\int_{\mathbb{R}} F_{x}^{h}(t,\omega) e^{j\omega(t-t_{0})} \frac{d\omega}{2\pi} = \iint_{\mathbb{R}^{2}} x(\tau)h(t-\tau)^{*} e^{j\omega(t-\tau-t_{0})} d\tau \frac{d\omega}{2\pi}$$

$$= \int_{\mathbb{R}} x(\tau)h(t-\tau)^{*} \delta(t-\tau-t_{0})d\tau$$

$$= x(t-t_{0})h(t_{0})^{*} \tag{8}$$

Si $t_0 = 0$ et $h(0) \neq 0$, on a :

$$x(t) = \frac{1}{h(0)^*} \int_{\mathbb{R}} F_x^h(t, \omega) e^{j\omega t} \frac{d\omega}{2\pi}$$
 (10)

Idées principales

- Généraliser l'usage des formules de synthèse avec des fenêtres d'analyse particulières $\mathcal{D}h(t) = \frac{dh}{dt}(t)$ et $\mathcal{T}h(t) = t \cdot h(t)$.
- Traiter les situations indéterminées (forme $\frac{0}{0}$) avec la règle de l'Hôpital.

Rappel: Théorème de l'Hôpital

Pour f et g, des fonctions dérivables au voisinage de x_0 . Si $f(x_0) = g(x_0) = 0$ et si $g'(x_0) \neq 0$, alors :

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)} \tag{11}$$

Preuve : Utiliser le théorème des accroissements finis (TAF) de Cauchy.

Marginale en temps

Si $F_h(0)=0$, et si $\frac{\partial F_h}{\partial \omega_0}(0)\neq 0$, on peut utiliser la règle de l'Hôpital avec l'Eq.(7) : $F_x(\omega)=\lim_{\omega_0\to 0}F_x(\omega+\omega_0)=$

$$\lim_{\omega_{0}\to 0} \frac{\int_{\mathbb{R}} F_{x}^{h}(t,\omega) e^{-j\omega_{0}t} dt}{F_{h}(-\omega_{0})^{*}} = \lim_{\omega_{0}\to 0} \frac{\frac{\partial}{\partial\omega_{0}} \int_{\mathbb{R}} F_{x}^{h}(t,\omega) e^{-j\omega_{0}t} dt}{\frac{\partial}{\partial\omega_{0}} \int_{\mathbb{R}} h(u)^{*} e^{-j\omega_{0}u} du}$$

$$= \lim_{\omega_{0}\to 0} \frac{\int_{\mathbb{R}} t F_{x}^{h}(t,\omega) e^{-j\omega_{0}t} dt}{\int_{\mathbb{R}} u h(u)^{*}} e^{-j\omega_{0}u} du} = \frac{\int_{\mathbb{R}} t F_{x}^{h}(t,\omega) dt}{F_{Th}(0)^{*}}$$

$$(12)$$

Cela permet d'obtenir la formule de synthèse suivante après transformée de Fourier inverse, quand $F_{Th}(0) \neq 0$:

$$x(t) = \frac{1}{F_{Th}(0)^*} \iint_{\mathbb{D}^2} \tau F_x^h(\tau, \omega) e^{j\omega t} d\tau \frac{d\omega}{2\pi}$$
 (13)

$\mathcal{T}^n h$ (généralisation)

Si on remplace h par $\mathcal{T}^n h$, $\forall n \in \mathbb{N}$ dans l'Eq. (7), on obtient :

$$F_{x}(\omega + \omega_{0}) = \frac{1}{F_{\mathcal{T}^{n}h}(-\omega_{0})^{*}} \int_{\mathbb{R}} F_{x}^{\mathcal{T}^{n}h}(t,\omega) e^{-j\omega_{0}t} dt$$
 (14)

Pour $\omega_0=0$, si $F_{\mathcal{T}^nh(0)}=0$ et $F_{\mathcal{T}^{n+1}h(0)}\neq 0$, on peut utiliser à nouveau la règle de l'Hôpital :

$$F_{x}(\omega) = \lim_{\omega_{0} \to 0} F_{x}(\omega + \omega_{0}) = \lim_{\omega_{0} \to 0} \frac{\frac{\partial}{\partial \omega_{0}} \left[\int_{\mathbb{R}} F_{x}^{\mathcal{T}^{n}h}(t, \omega) e^{-j\omega_{0}t} dt \right]}{\frac{d}{d\omega_{0}} \left[F_{\mathcal{T}^{n}h}(-\omega_{0})^{*} \right]}$$
(15)

$$=\frac{\int_{\mathbb{R}} t F_{x}^{\mathcal{T}^{n}h}(t,\omega) dt}{F_{\mathcal{T}^{n+1}h}(0)^{*}}$$
(16)

$\mathcal{DT}^n h$ (généralisation)

Si on remplace h par $\mathcal{DT}^n h$ dans l'Eq. (12), le dénominateur fait apparaître $F_{\mathcal{TDT}^n h}(0)^*$ reformulé ainsi :

$$F_{\mathcal{T}\mathcal{D}\mathcal{T}^{n}h}(\omega) = j\frac{d}{d\omega} \left[F_{\mathcal{D}\mathcal{T}^{n}h}(\omega) \right] = j\frac{d}{d\omega} \left[\omega j^{n+1} \frac{d^{n}}{d\omega^{n}} F_{h}(\omega) \right]$$

$$= j^{n+2} \frac{d^{n}}{d\omega^{n}} F_{h}(\omega) + j\omega j^{n+1} \frac{d^{n+1}}{d\omega^{n+1}} F_{h}(\omega)$$

$$= -F_{\mathcal{T}^{n}h}(\omega) + F_{\mathcal{D}\mathcal{T}^{n+1}h}(\omega). \tag{17}$$

Donc, si $F_{\mathcal{T}\mathcal{D}\mathcal{T}^nh}(0) \neq 0$, l'Eq. (16) conduit à :

$$F_{x}(\omega) = \frac{\int_{\mathbb{R}} t F_{x}^{DT^{n}h}(t,\omega) dt}{F_{\mathcal{T}D\mathcal{T}^{n+1}h}(0)^{*}} = \frac{\int_{\mathbb{R}} t F_{x}^{\mathcal{D}\mathcal{T}^{n}h}(t,\omega) dt}{F_{\mathcal{D}\mathcal{T}^{n+1}h}(0)^{*} - F_{\mathcal{T}^{n}h}(0)^{*}}$$
(18)

$\mathcal{D}^n h$ (généralisation)

En remplaçant h par $\mathcal{D}^n h(t)$ dans l'Eq. (10), $\forall n \in \mathbb{N}$.

Si $\mathcal{D}^n h(t_0) \neq 0$, alors on a :

$$x(t-t_0) = \frac{1}{\mathcal{D}^n h(t_0)^*} \int_{\mathbb{R}} F_x^{\mathcal{D}^n h}(t,\omega) e^{j\omega(t-t_0)} \frac{d\omega}{2\pi}.$$
 (19)

Si $\mathcal{D}^n h(0) = 0$ et $\mathcal{D}^{n+1} h(0) \neq 0$, on peut utiliser la règle de l'Hôpital, car $\frac{d}{dt}[\mathcal{D}^n h(t)] = \mathcal{D}^{n+1} h(t)$, ce qui permet d'écrire :

$$x(t) = \frac{1}{j\mathcal{D}^{n+1}h(0)^*} \int_{\mathbb{R}} \omega F_x^{\mathcal{D}^n h}(t, \omega) e^{j\omega t} \frac{d\omega}{2\pi}$$
 (20)

$\mathcal{TD}^n h$ (généralisation)

En remplaçant h par $\mathcal{TD}^n h$, $\forall n \in \mathbb{N}$, on remarque :

$$\frac{d}{dt}[\mathcal{TD}^n h(t)] = \mathcal{D}^n h(t) + \underbrace{t\mathcal{D}^{n+1} h(t)}_{\mathcal{TD}^{n+1} h(t)}.$$
 (21)

Comme $\mathcal{TD}^n h(0) = 0, \forall n \in \mathbb{N}$, alors $\lim_{t \to 0} \frac{d}{dt} \mathcal{TD}^n h(t) = \mathcal{D}^n h(0)$.

Ainsi, lorsque
$$\mathcal{D}^n h(0) \neq 0$$
, on obtient :

$$x(t) = \frac{1}{j\mathcal{D}^n h(0)^*} \int_{\mathbb{R}} \omega F_x^{\mathcal{T}\mathcal{D}^n h}(t, \omega) e^{j\omega t} \frac{d\omega}{2\pi}$$
 (22)

Opérateur \hat{t}

De même, en remplaçant h par $\mathcal{T}h$ dans l'Eq. (10), on obtient :

$$\int_{\mathbb{R}} F_{x}^{Th}(t,\omega) e^{j\omega t} \frac{d\omega}{2\pi} = \int_{\mathbb{R}} \frac{F_{x}^{Th}(t,\omega)}{F_{x}^{h}(t,\omega)} F_{x}^{h}(t,\omega) e^{j\omega t} \frac{d\omega}{2\pi}
= \int_{\mathbb{R}} \left(\operatorname{Re} \left(\frac{F_{x}^{Th}(t,\omega)}{F_{x}^{h}(t,\omega)} \right) + j \operatorname{Im} \left(\frac{F_{x}^{Th}(t,\omega)}{F_{x}^{h}(t,\omega)} \right) \right) F_{x}^{h}(t,\omega) e^{j\omega t} \frac{d\omega}{2\pi}
= \int_{\mathbb{R}} (t - \hat{t}_{x}(t,\omega)) F_{x}^{h}(t,\omega) e^{j\omega t} \frac{d\omega}{2\pi}
+ j \int_{\mathbb{R}} \operatorname{Im} \left(\frac{F_{x}^{Th}(t,\omega)}{F_{x}^{h}(t,\omega)} \right) F_{x}^{h}(t,\omega) e^{j\omega t} \frac{d\omega}{2\pi}$$

$$= x(t) Th(0)^{*} = 0$$
(23)

Opérateur $\hat{\omega}$

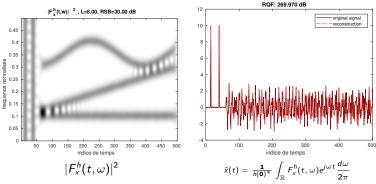
En remplaçant h par $\mathcal{D}h$ dans l'Eq. (10), on obtient :

$$\int_{\mathbb{R}} F_{x}^{\mathcal{D}h}(t,\omega)e^{j\omega t} \frac{d\omega}{2\pi} = \int_{\mathbb{R}} \frac{F_{x}^{\mathcal{D}h}(t,\omega)}{F_{x}^{h}(t,\omega)} F_{x}^{h}(t,\omega)e^{j\omega t} \frac{d\omega}{2\pi}
= \int_{\mathbb{R}} \left(\operatorname{Re} \left(\frac{F_{x}^{\mathcal{D}h}(t,\omega)}{F_{x}^{h}(t,\omega)} \right) + j\operatorname{Im} \left(\frac{F_{x}^{\mathcal{D}h}(t,\omega)}{F_{x}^{h}(t,\omega)} \right) \right) F_{x}^{h}(t,\omega)e^{j\omega t} \frac{d\omega}{2\pi}
= j \int_{\mathbb{R}} (\hat{\omega}_{x}(t,\omega) - \omega) F_{x}^{h}(t,\omega)e^{j\omega t} \frac{d\omega}{2\pi}
+ \int_{\mathbb{R}} \operatorname{Re} \left(\frac{F_{x}^{\mathcal{D}h}(t,\omega)}{F_{x}^{h}(t,\omega)} \right) F_{x}^{h}(t,\omega)e^{j\omega t} \frac{d\omega}{2\pi}$$

$$= x(t)\mathcal{D}h(0)^{*} \tag{25}$$

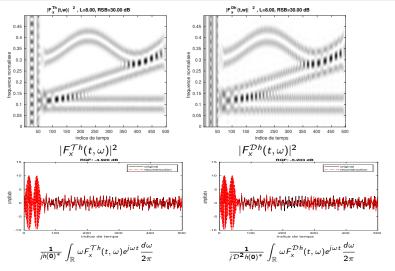
qui vaut 0 quand $\mathcal{D}h(0)=0$, (ie. pour une fenêtre d'analyse symétrique centrée en 0).

Expérience



- Signal synthétique multicomposante mélangé à un bruit blanc (RSB 1=30 dB)
- Fenêtre d'analyse gaussienne de largeur $L:h[n]=rac{1}{\sqrt{2\pi}l}e^{-rac{n^2}{2L^2}}$
- Approximation rectangulaire (période d'échantillonnage T_s , nombre d'indices fréquentiels M=500) : $F_x^h[n,m] \approx F_X^h(nT_s, 2\pi \frac{m}{MT_s})$
- Qualitè de reconstruction : $RQF(x, \hat{x}) = \frac{||x||_2^2}{||x \hat{x}||_2^2}$
- 1. Rapport signal sur bruit

Reconstruction utilisant la règle de l'Hôpital



Reconstruction de x impossible à partir de F_x^{Th} et F_x^{Dh} avec les marginales classiques.

Conclusion

Bilan

- Nous introduisons plusieurs familles de formules de synthèse de la TFCT reposant sur des fenêtres d'analyse particulières
- Permet la reconstruction du signal à partir des fenêtres d'analyse modifiées $F_x^{\mathcal{D}h}$ et $F_x^{\mathcal{T}h}$ (impossible avec les marginales classiques)
- Certaines formules font naturellement apparaître les opérateurs de réallocation

Limitations

- Quelques problèmes de stabilité numérique observés sur les reconstructions utilisant la règle de l'Hôpital.
- Besoin d'une étude approfondie des formules de synthèse obtenues avec plus de simulations numériques
- ⇒ Travail préliminaire pour développer de nouveaux outils inspirés du synchrosqueezing pour l'extraction des composantes présentes dans un signal.

Merci

Code Matlab:

https://github.com/dfourer/STFTmarginals

Lien vers l'article GRETSI 2025 :

