See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323416221

Statistical Assessment of Abrupt Change Detectors for Non-Intrusive Load Monitoring

Presentation - February 2018
DOI: 10.13140/RG.2.2.23733.37602

CITATIONS
CIT

Some of the authors of this publication are also working on these related projects:

ABC-DJ View project

Analysis of Three-phase signals View project

All content following this page was uploaded by Francois Auger on 27 February 2018.

Statistical Assessment of Abrupt Change Detectors for Non-Intrusive Load Monitoring

S. Houidi, F. Auger, H. Ben Attia Sethom, L. Miègeville, D. Fourer, X. Jiang

Advancing Technology for Humanity

Outline

Introduction

- Non Intrusive Load Monitoring
- General framework

2 Abrupt change detection

- Definition
- Mathematical problem statement
- Algorithms implementation
 - Assessment conditions
 - Effective residual processing method
 - CUSUM algorithm
 - BIC algorithm
- 3 Statistical assessment
 - Test bench description
 - Performance evaluation tools
- 4 Experimental Results
- 5 Conclusion and prospectives
 - Conclusion
 - Prospectives

Non Intrusive Load Monitoring General framework

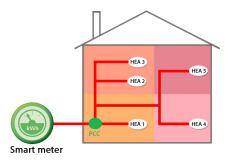
1 Introduction

- Non Intrusive Load Monitoring
- General framework

2 Abrupt change detection

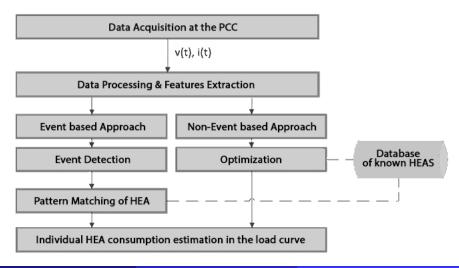
- 3 Statistical assessment
- 4 Experimental Results
- 5 Conclusion and prospectives

- NILM: Process to estimate the energy consumed by individual Home Electrical Appliances (HEAs) with a single meter in a house electrical panel connected at the PCC.
 - \Rightarrow Partition of the load curve into its main components
 - ⇒ Assignment of energy expenses per HEA



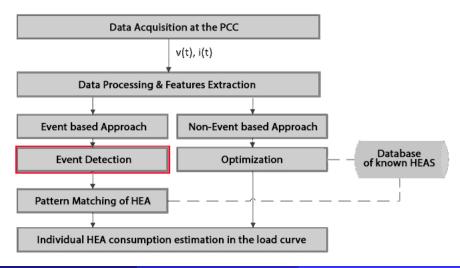
Non Intrusive Load Monitoring General framework

General framework of supervised NILM methods



Non Intrusive Load Monitoring General framework

General framework of supervised NILM methods



Definition Mathematical problem statement Algorithms implementation

1 Introduction

2 Abrupt change detection

- Definition
- Mathematical problem statement
- Algorithms implementation

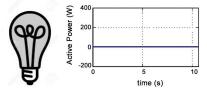
3 Statistical assessment

- 4 Experimental Results
- 5 Conclusion and prospectives

Definition Mathematical problem statement Algorithms implementation

Abrupt change definition

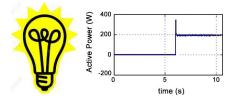
■ Fast transition that occurs between stationary states in a signal ⇒ NILM: On/Off and multiple operation modes appliances



Definition Mathematical problem statement Algorithms implementation

Abrupt change definition

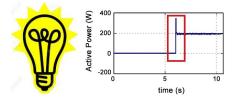
■ Fast transition that occurs between stationary states in a signal ⇒ NILM: On/Off and multiple operation modes appliances



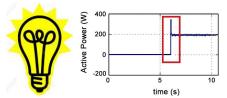
Definition Mathematical problem statement Algorithms implementation

Abrupt change definition

■ Fast transition that occurs between stationary states in a signal ⇒ NILM: On/Off and multiple operation modes appliances



Abrupt change definition

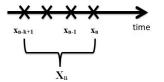


Need of tools to decide whether a change occurs or not in the signal

Definition Mathematical problem statement Algorithms implementation

Mathematical formulation 1/2

- $X_n = \{x_m \in \mathbb{R}, m = n k + 1, ..., n\}$: vector of the last *k* available samples of a signal at the current time *n*.
- x_m follows a probability density function (PDF) $p_{\theta}(x_m)$ depending on a deterministic parameter θ
- **Abrupt change:** modification of θ at a change time n_c .



 \Rightarrow Hypothesis Test:

▶ H_0 : "no change" versus H_1 : "with a change at time n_c "

Introduction Abrupt change Statistical assessment Experimental Results Conclusion and prospectives Definition Mathematical problem statement Algorithms implementation

Mathematical formulation 2/2

under H₀,
$$\theta = \theta_0$$
 for $n - k + 1 \le m \le n$
under H₁, $\theta = \begin{cases} \theta_{1a} \text{ for } n - k + 1 \le m \le n_c - 1\\ \theta_{1b} \text{ for } n_c \le m \le n \end{cases}$

\Rightarrow Decision rule:

At each time n, comparison of a **decision function** g_n to a **threshold value** h adjusted according to decision probabilities

decide H_1 if $g_n > h$ decide H_0 if $g_n \le h$ Definition Mathematical problem statement Algorithms implementation

Detectors assessment conditions

- ⇒ Assessment of all the algorithms in strictly the same conditions
- \Rightarrow Sliding window of **k** = **5 samples** for the three detection algorithms to be studied:
 - ► The Effective Residual algorithm
 - ► The CUmulative SUM (CUSUM) algorithm
 - ► The Bayesian Information Criterion (BIC) algorithm

Definition Mathematical problem statement Algorithms implementation

Effective Residual

- Parity equation-based approach:
 - \Rightarrow temporal redundancies of measurements
 - \Rightarrow used for sensor fault detection and isolation

Introduction Abrupt change Statistical assessment Experimental Results Conclusion and prospectives Definition Mathematical problem statement Algorithms implementation

Effective Residual decision function

Absolute variation δ_m between 2 consecutive signal samples:

 $\delta_m = |x_m - x_{m-1}|$ for $n - k + 2 \le m \le n$

Residual *r_m*: difference between 2 consecutive variations

$$r_m = |\delta_m - \delta_{m-1}|$$
 for $n - k + 3 \le m \le n$

Effective Residual decision function: sum of the last 3 residuals

$$g_n \stackrel{\mathrm{H}_1}{\underset{\mathrm{H}_0}{\geq}} h \quad \mathrm{with} \quad g_n = r_n + r_{n-1} + r_{n-2}$$

⇒ Detection of a mean change at $n_c = n$ from the **last k** = **5 samples** of the signal

Definition Mathematical problem statement Algorithms implementation

CUSUM algorithm

- Used for biomedical engineering as well as for NILM applications
- Based on log-likelihood ratio maximization over change time n_c
- Most common form: statistical test for the detection of a mean change in a Gaussian process N(μ, σ)

Introduction Abrupt change Statistical assessment Experimental Results Conclusion and prospectives Definition Mathematical problem statement Algorithms implementation

CUSUM algorithm principle

PDFs of X_n under hypotheses H₀ and H₁:

$$p(X_n|H_0) = \prod_{m=n-k+1}^{n} p_{\theta_0}(x_m) \qquad \qquad p(X_n|H_1) = \prod_{m=n-k+1}^{n_c-1} p_{\theta_{1a}}(x_m) \prod_{m=n_c}^{n} p_{\theta_{1b}}(x_m)$$

If $\theta_0 = \theta_{1a}$, log-likelihood ratio $L(X_n, n_c)$:

$$L(X_n, n_c) = \ln\left(\frac{p(X_n | \mathbf{H}_1)}{p(X_n | \mathbf{H}_0)}\right) = \sum_{m=n_c}^n s_m \quad \text{with} \quad s_m = \ln\left(\frac{p_{\theta_{1b}}(x_m)}{p_{\theta_{1a}}(x_m)}\right)$$

CUSUM decision rule: maximization of the log-likelihood ratio over n_c

$$g_n \stackrel{\mathrm{H}_1}{\geq} h$$
, with $g_n = \max_{n-k+1 \leq n_c \leq n} \sum_{m=n_c}^n s_m$

Definition Mathematical problem statement Algorithms implementation

CUSUM decision function

Changing parameter: mean value μ in a Gaussian process $\mathcal{N}(\mu, \sigma)$

under H₀,
$$\mu = \mu_0$$
 for $n-k+1 \le m \le n$
under H₁, $\mu = \begin{cases} \mu_{1a} & \text{for } n-k+1 \le m \le n_c-1\\ \mu_{1b} & \text{for } n_c \le m \le n \end{cases}$

Instantaneous log-likelihood ratio s_m :

$$s_m = \frac{(x_m - \mu_{1b})^2}{2\sigma^2} + \frac{(x_m - \mu_{1a})^2}{2\sigma^2} = \frac{\Delta \mu}{\sigma^2} \left(x_m - \frac{\mu_{1b} + \mu_{1a}}{2} \right) \quad \text{with} \quad \Delta \mu = \mu_{1b} - \mu_{1a}$$

\Rightarrow The CUSUM decision rule g_n :

For an abrupt change occurring at $n_c = n$ in a sliding window of k = 5 samples

with
$$\hat{\mu}_{1b} = x_n$$
, $\hat{\mu}_{1a} = \frac{1}{4} \sum_{m=n-4}^{n-1} x_m$ and $\hat{\sigma}^2 = \frac{1}{4} \sum_{m=n-4}^{n-1} (x_m - \hat{\mu}_{1a})^2$,
 $g_n \stackrel{\text{H}_1}{\geq} h$, with $g_n = s_n = \frac{(x_n - \hat{\mu}_{1a})^2}{2 \hat{\sigma}^2}$

Definition Mathematical problem statement Algorithms implementation

BIC algorithm

- Used for acoustic change detection
- Division of the sequence of observed random samples into homogeneous segments by performing a hypothesis test at each potential change point
 - \Rightarrow Hypothesis H₀: on both sides of this point, the signal follows the same probabilistic model
 - \Rightarrow Hypothesis H₁: a model change occurs

Definition Mathematical problem statement Algorithms implementation

BIC algorithm principle

The BIC of X_n under hypothesis H_i , $i \in \{0, 1\}$: likelihood criterion penalized by the model complexity

$$\mathsf{BIC}(H_i) = \ln(p(X_n|H_i)) - \frac{\lambda}{2}M\ln(k)$$

- $p(X_n|H_i)$ Maximized data likelihood for the given model
- λ Penalty factor (ideally equal to 1)

M Number of parameters in the probabilistic model Probabilistic model:

$$\begin{aligned} & \text{H}_0 & : \quad \textbf{X}_{n-k+1}, \dots, \textbf{X}_n \sim \mathcal{N}(\mu_0, \sigma_0) \\ & \text{H}_1 & : \quad \textbf{X}_{n-k+1}, \dots, \textbf{X}_{nc-1} \sim \mathcal{N}(\mu_{1a}, \sigma_{1a}); \\ & \quad \textbf{X}_{nc}, \dots, \textbf{X}_n \sim \mathcal{N}(\mu_{1b}, \sigma_{1b}) \end{aligned}$$

Model parameters:

- Under H₀: μ_0 and σ_0 (M = 2)
- Under H₁: μ_{1a}, σ_{1a} , and μ_{1b}, σ_{1b} (M = 4)
- ⇒ Maximization of BIC(H_i) when μ and σ^2 are replaced by their MLEs $\hat{\mu}$ and $\hat{\sigma}^2$

F. Auger

Definition Mathematical problem statement Algorithms implementation

BIC decision function

The BIC decision function g_n is:

$$g_n \stackrel{H_1}{\geq} h \quad \text{with} \quad g_n = \max_{n-k+1 \leq n_c \leq n} \Delta \text{BIC}(n_c)$$

where $\Delta \text{BIC}(n_c) = \text{BIC}(H_1) - \text{BIC}(H_0)$
 $= \frac{k}{2} \ln(\hat{\sigma}_0^2) - \frac{(n_c - n + k - 1)}{2} \ln(\hat{\sigma}_{1a}^2) - \frac{(n - n_c + 1)}{2} \ln(\hat{\sigma}_{1b}^2) - \lambda \ln(k)$

 \Rightarrow BIC decision rule:

For an abrupt change occurring at $n_c = n - 1$ in a **sliding window** of k = 5 samples:

$$g'_n \stackrel{\mathrm{H}_1}{\geq} h' \quad \text{with} \quad g'_n = \frac{1}{2} \ln \left(\frac{\hat{\sigma}_0^{10}}{\hat{\sigma}_{1a}^6 \hat{\sigma}_{1b}^4} \right), \ h' = h + \lambda \ln(5)$$

with
$$\hat{\sigma}_0^2 = \frac{1}{5} \sum_{m=n-4}^n (x_m - \hat{\mu}_0)^2$$
, $\hat{\sigma}_{1a}^2 = \frac{1}{3} \sum_{m=n-4}^{n-2} (x_m - \hat{\mu}_{1a})^2$ and $\hat{\sigma}_{1b}^2 = \frac{1}{2} \sum_{m=n-1}^n (x_m - \hat{\mu}_{1b})^2$

Test bench description Performance evaluation tools

1 Introduction

2 Abrupt change detection

3 Statistical assessment

- Test bench description
- Performance evaluation tools

4 Experimental Results

5 Conclusion and prospectives

Test bench description Performance evaluation tools

Test bench

■ Monte Carlo Test repeated 100 000 times

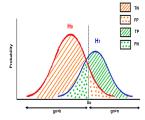
- \Rightarrow X_n is filled with 5 *i.i.d* samples $x_m \sim \mathcal{N}(0, \sigma)$ with $\sigma = 1$
- \Rightarrow Under H₁, addition of $\Delta \mu = \text{SNR} \times \sigma$:
 - ▶ to the last sample for Effective Residual and CUSUM
 - ▶ to the last 2 samples for the BIC
- \Rightarrow Assessment made for:
 - ▶ fixed SNR values
 - ▶ varying SNR values ranging from 0.5 to 10
- \Rightarrow Use of 400 logarithmically spaced values of *h*

Test bench description Performance evaluation tools

Performance metrics

Basic performance metrics:

True Positive TP	\rightarrow	detection of a change when there is really one
True Negative TN	\rightarrow	no detection of a change when there is not
False Positive FP	\rightarrow	detection of a change when there is not
False Negative FN	\rightarrow	no detection of a change when there is really one



Computation of performance rates: True Positive Rate TPR

TPR = TP/(TP + FN)

False Positive Rate FPR

FPR = FP/(TN + FP)

Precision P_R

$$P_R = TP/(TP + FP)$$

F. Auger

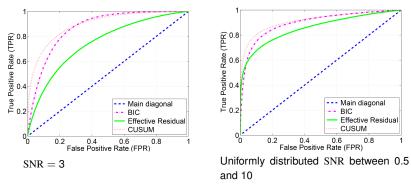
ICIT 2018

Test bench description Performance evaluation tools

Performance metrics

Receiver Operating Characteristics (ROC): Plot of the TPR versus the FPR for varying values of h

$$\lim_{h \to -\infty} TPR = 1, \lim_{h \to -\infty} FPR = 1, \lim_{h \to +\infty} TPR = 0, \lim_{h \to +\infty} FPR = 0$$



 \Rightarrow CUSUM ROC curve is the closest to the "optimal" point (FPR=0;TPR=1)

F. Auger

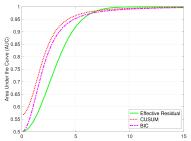
Test bench description Performance evaluation tools

Performance metrics

Area Under the Curve (AUC): Numerical integration of the ROC curve

AUC values computed for the three considered detection algorithms

	Effective Residual	сиѕим	BIC
SNR = 0.5	0.51	0.59	0.53
SNR = 3	0.75	0.89	0.87
SNR = 6	0.96	0.98	0.97
variable SNR	0.85	0.91	0.89



 \Rightarrow CUSUM: best detection ability

SNR-AUC profile of the Effective Residual, CUSUM and BIC algorithms.

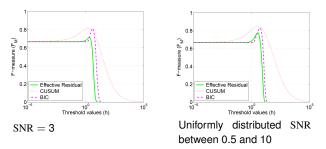
Test bench description Performance evaluation tools

Performance metrics

F-Measure (F_M) harmonic mean of P_R and TPR

$$\mathbf{F}_{\mathrm{M}} = \left(\frac{P_{R}^{-1} + \mathrm{TPR}^{-1}}{2}\right)^{-1} = 2 \times \frac{P_{R} \times \mathrm{TPR}}{P_{R} + \mathrm{TPR}}$$

■ F-measure (F_M) depending on threshold values *h* of each detector:



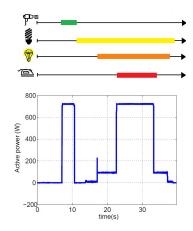
- For small values of h, $P_R = 1/2$ and TPR = 1, so $F_M = 2/3$.
- For large values of h, TPR = 0, so $F_M = 0$.
- For the three detectors, the maximum F_M score is reached for a specific threshold value which is the optimal one.

1 Introduction

- 2 Abrupt change detection
- 3 Statistical assessment
- 4 Experimental Results
- 5 Conclusion and prospectives

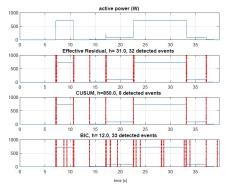
Practical case study

- Realization of a controlled consumption scenario using our own measurement system
- Measured current *i*[*k*] and voltage *v*[*k*] sampled at *F*_s=1.2 kHz



Application of the detetctors

- Active power signal $P[n] = \frac{1}{M} \sum_{k=n-M+1}^{n} v[k]i[k]$, with M = Fs/F
- For each detector, *h* is set to allow the detection of the lowest $\Delta P = (P[n] P[n-1])$ (low-energy lamp switch-on)
- Power time profile and detection results of each algorithm:



Detection results 1/2

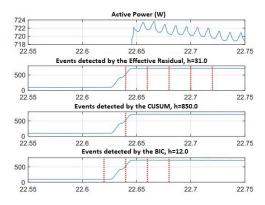
Threshold values h and number of TP, FP and P_R of the three considered detection algorithms applied to the active power signal.

	Effective	CUSUM	BIC
	Residual		
h	31.0	850.0	12.0
Number of	32	8	33
detected events			
TP	7	7	7
FP	25	1	26
P _R	21.3%	87.5%	21.2%

⇒ The CUSUM algorithm appears to be the most effective with a high P_R and a small number of false positive.

Detection results 2/2

- Relatively large number of detected events for the Effective Residual and the BIC algorithms
 - \Rightarrow Noisy steady-states leading to false positive F_P and inaccurate detections.
 - I Zoom overview of the active power signal drawn by the iron switch on:



1 Introduction

- 2 Abrupt change detection
- 3 Statistical assessment
- 4 Experimental Results
- 5 Conclusion and prospectives
 Conclusion
 - Prospectives

Conclusion

- Event-based NILM approach
- Study of 3 detectors: Effective Residual, CUSUM and BIC
- Test bench for the statistical assessment of the detectors under the same conditions
- Definition of metrics to judge the detectors performances
- **Practical case study**: application of the detectors to a controlled HEAs consumption scenario.

Prospectives

- Threshold setup from the Probability Density Function of the decision functions
- Extension to multidimensional signals to make a decision from several features

Thank you for your attention.

