Statistical Assessment of Abrupt Change Detectors for Non-Intrusive Load Monitoring

S. Houidi, F. Auger, H. Ben Attia Sethom, L. Miègeville, D. Fourer, X. Jiang
Outline

1 Introduction
 - Non Intrusive Load Monitoring
 - General framework

2 Abrupt change detection
 - Definition
 - Mathematical problem statement
 - Algorithms implementation
 - Assessment conditions
 - Effective residual processing method
 - CUSUM algorithm
 - BIC algorithm

3 Statistical assessment
 - Test bench description
 - Performance evaluation tools

4 Experimental Results

5 Conclusion and prospectives
 - Conclusion
 - Prospectives
1 Introduction
 - Non Intrusive Load Monitoring
 - General framework

2 Abrupt change detection

3 Statistical assessment

4 Experimental Results

5 Conclusion and prospectives
NILM goals

NILM: Process to estimate the energy consumed by individual Home Electrical Appliances (HEAs) with a single meter in a house electrical panel connected at the PCC.

- Partition of the load curve into its main components
- Assignment of energy expenses per HEA
General framework of supervised NILM methods

Data Acquisition at the PCC

\[v(t), i(t) \]

Data Processing & Features Extraction

Event based Approach

Event Detection

Pattern Matching of HEA

Individual HEA consumption estimation in the load curve

Non-Event based Approach

Optimization

Database of known HEAS
General framework of supervised NILM methods

- **Data Acquisition at the PCC**
 - $v(t), i(t)$

- **Data Processing & Features Extraction**

- **Event based Approach**
 - Event Detection

- **Non-Event based Approach**
 - Optimization

- **Database of known HEAS**

- **Pattern Matching of HEA**

- **Individual HEA consumption estimation in the load curve**
1 Introduction

2 Abrupt change detection
 - Definition
 - Mathematical problem statement
 - Algorithms implementation

3 Statistical assessment

4 Experimental Results

5 Conclusion and prospectives
Fast transition that occurs between stationary states in a signal

\Rightarrow **NILM:** On/Off and multiple operation modes appliances
Abrupt change definition

- Fast transition that occurs between stationary states in a signal
 ⇒ **NILM**: On/Off and multiple operation modes appliances
Abrupt change definition

- Fast transition that occurs between stationary states in a signal
 ⇒ **NILM**: On/Off and multiple operation modes appliances
Abrupt change definition

- Fast transition that occurs between stationary states in a signal
 \[\Rightarrow \textbf{NILM}: \text{On/Off and multiple operation modes appliances}\]

- Need of **tools** to decide whether a change occurs or not in the signal
Mathematical formulation 1/2

- \(X_n = \{ x_m \in \mathbb{R}, m = n - k + 1, \ldots, n \} \): vector of the last \(k \) available samples of a signal at the current time \(n \).
- \(x_m \) follows a probability density function (PDF) \(p_\theta(x_m) \) depending on a deterministic parameter \(\theta \).
- **Abrupt change**: modification of \(\theta \) at a change time \(n_c \).

\[X_n = \{ x_m \in \mathbb{R}, m = n - k + 1, \ldots, n \} \]

\(\Rightarrow \) Hypothesis Test:
- \(H_0: \text{"no change"} \) versus \(H_1: \text{"with a change at time } n_c \)"
Mathematical formulation 2/2

under H_0, $\theta = \theta_0$ for $n - k + 1 \leq m \leq n$

under H_1, $\theta = \begin{cases}
\theta_{1a} & \text{for } n - k + 1 \leq m \leq n_c - 1 \\
\theta_{1b} & \text{for } n_c \leq m \leq n
\end{cases}$

\Rightarrow Decision rule:
At each time n, comparison of a decision function g_n to a threshold value h adjusted according to decision probabilities

- decide H_1 if $g_n > h$
- decide H_0 if $g_n \leq h$
⇒ Assessment of all the algorithms in strictly the same conditions

⇒ Sliding window of $k = 5$ samples for the three detection algorithms to be studied:
 ◦ The Effective Residual algorithm
 ◦ The CUMulative SUM (CUSUM) algorithm
 ◦ The Bayesian Information Criterion (BIC) algorithm
Effective Residual

- Parity equation-based approach:
 ⇒ temporal redundancies of measurements
 ⇒ used for sensor fault detection and isolation
Effective Residual decision function

- Absolute variation δ_m between 2 consecutive signal samples:
 \[\delta_m = |x_m - x_{m-1}| \quad \text{for} \quad n - k + 2 \leq m \leq n \]

- Residual r_m: difference between 2 consecutive variations
 \[r_m = |\delta_m - \delta_{m-1}| \quad \text{for} \quad n - k + 3 \leq m \leq n \]

- Effective Residual decision function: sum of the last 3 residuals
 \[g_n = r_n + r_{n-1} + r_{n-2} \]

\[\begin{align*}
H_1 & \quad \geq h \\
H_0 &
\end{align*} \]

⇒ Detection of a mean change at $n_c = n$ from the last $k = 5$ samples of the signal
CUSUM algorithm

- Used for biomedical engineering as well as for NILM applications
- Based on **log-likelihood ratio maximization** over change time n_c
- Most common form: statistical test for the detection of a **mean change** in a Gaussian process $\mathcal{N}(\mu, \sigma)$
CUSUM algorithm principle

- PDFs of X_n under hypotheses H_0 and H_1:

$$p(X_n|H_0) = \prod_{m=n-k+1}^{n} p_{\theta_0}(x_m)$$

$$p(X_n|H_1) = \prod_{m=n-k+1}^{n-1} p_{\theta_{1a}}(x_m) \prod_{m=n_c}^{n} p_{\theta_{1b}}(x_m)$$

- If $\theta_0=\theta_{1a}$, log-likelihood ratio $L(X_n, n_c)$:

$$L(X_n, n_c) = \ln \left(\frac{p(X_n|H_1)}{p(X_n|H_0)} \right) = \sum_{m=n_c}^{n} s_m \quad \text{with} \quad s_m = \ln \left(\frac{p_{\theta_{1b}}(x_m)}{p_{\theta_{1a}}(x_m)} \right)$$

- CUSUM decision rule: maximization of the log-likelihood ratio over n_c

$$g_n \begin{cases} H_1 \\ H_0 \end{cases} h, \quad \text{with} \quad g_n = \max_{n-k+1 \leq n_c \leq n} \sum_{m=n_c}^{n} s_m$$
CUSUM decision function

■ Changing parameter: mean value μ in a Gaussian process $\mathcal{N}(\mu, \sigma)$

under H_0, $\mu = \mu_0$ for $n-k+1 \leq m \leq n$

under H_1, $\mu = \begin{cases} \mu_1a & \text{for } n-k+1 \leq m \leq n_c-1 \\ \mu_1b & \text{for } n_c \leq m \leq n \end{cases}$

■ Instantaneous log-likelihood ratio s_m:

$$s_m = \frac{(x_m - \mu_{1b})^2}{2\sigma^2} + \frac{(x_m - \mu_{1a})^2}{2\sigma^2} = \frac{\Delta\mu}{\sigma^2} \left(x_m - \frac{\mu_{1b} + \mu_{1a}}{2} \right)$$

with $\Delta\mu = \mu_{1b} - \mu_{1a}$

⇒ The CUSUM decision rule g_n:

For an abrupt change occurring at $n_c = n$ in a sliding window of $k = 5$ samples

with $\hat{\mu}_{1b} = x_n$, $\hat{\mu}_{1a} = \frac{1}{4} \sum_{m=n-4}^{n-1} x_m$ and $\hat{\sigma}^2 = \frac{1}{4} \sum_{m=n-4}^{n-1} (x_m - \hat{\mu}_{1a})^2$,

$$g_n \begin{cases} H_1 & \text{if } g_n \geq h \\ H_0 & \text{if } g_n < h \end{cases}$$

with $g_n = s_n = \frac{(x_n - \hat{\mu}_{1a})^2}{2\hat{\sigma}^2}$
BIC algorithm

- Used for acoustic change detection
- Division of the sequence of observed random samples into homogeneous segments by performing a hypothesis test at each potential change point
 - Hypothesis H_0: on both sides of this point, the signal follows the same probabilistic model
 - Hypothesis H_1: a model change occurs
BIC algorithm principle

■ The BIC of X_n under hypothesis H_i, $i \in \{0, 1\}$: likelihood criterion penalized by the model complexity

$$
\text{BIC}(H_i) = \ln(p(X_n|H_i)) - \frac{\lambda}{2} M \ln(k)
$$

$p(X_n|H_i)$ Maximized data likelihood for the given model

λ Penalty factor (ideally equal to 1)

k Last available samples

M Number of parameters in the probabilistic model

■ Probabilistic model:

$$
\begin{align*}
H_0 & : \quad x_{n-k+1}, \ldots, x_n \sim \mathcal{N}(\mu_0, \sigma_0) \\
H_1 & : \quad x_{n-k+1}, \ldots, x_{n_c-1} \sim \mathcal{N}(\mu_{1a}, \sigma_{1a}); \\
& \quad x_{n_c}, \ldots, x_n \sim \mathcal{N}(\mu_{1b}, \sigma_{1b})
\end{align*}
$$

■ Model parameters:

- Under H_0: μ_0 and σ_0 ($M = 2$)
- Under H_1: μ_{1a}, σ_{1a}, and μ_{1b}, σ_{1b} ($M = 4$)

\Rightarrow Maximization of $\text{BIC}(H_i)$ when μ and σ^2 are replaced by their MLEs $\hat{\mu}$ and $\hat{\sigma}^2$
BIC decision function

- The BIC decision function g_n is:

$$g_n \begin{cases} H_1 & \geq h \\ H_0 \end{cases} \text{ with } g_n = \max_{n-k+1 \leq n_c \leq n} \Delta BIC(n_c)$$

where $\Delta BIC(n_c) = BIC(H_1) - BIC(H_0)$

$$= \frac{k}{2} \ln(\hat{\sigma}_0^2) - \frac{(n_c - n + k - 1)}{2} \ln(\hat{\sigma}_{1a}^2) - \frac{(n - n_c + 1)}{2} \ln(\hat{\sigma}_{1b}^2) - \lambda \ln(k)$$

\Rightarrow BIC decision rule:

For an abrupt change occurring at $n_c = n - 1$ in a sliding window of $k = 5$ samples:

$$g'_n \begin{cases} H_1 & \geq h' \\ H_0 \end{cases} \text{ with } g'_n = \frac{1}{2} \ln\left(\frac{\hat{\sigma}_{10}^2}{\hat{\sigma}_{1a}^6 \hat{\sigma}_{1b}^4}\right), \ h' = h + \lambda \ln(5)$$

with $\hat{\sigma}_0^2 = \frac{1}{5} \sum_{m=n-4}^{n} (x_m - \hat{\mu}_0)^2$, $\hat{\sigma}_{1a}^2 = \frac{1}{3} \sum_{m=n-4}^{n-2} (x_m - \hat{\mu}_{1a})^2$ and $\hat{\sigma}_{1b}^2 = \frac{1}{2} \sum_{m=n-1}^{n} (x_m - \hat{\mu}_{1b})^2$
1 Introduction

2 Abrupt change detection

3 Statistical assessment
 - Test bench description
 - Performance evaluation tools

4 Experimental Results

5 Conclusion and prospectives
Test bench

- Monte Carlo Test repeated 100,000 times

 \[X_n \text{ is filled with } 5 \, i.i.d \, \text{samples } x_m \sim \mathcal{N}(0, \sigma) \text{ with } \sigma = 1 \]

 \[\text{Under } H_1, \text{ addition of } \Delta \mu = \text{SNR} \times \sigma:\]

 - to the last sample for Effective Residual and CUSUM
 - to the last 2 samples for the BIC

⇒ Assessment made for:

 - fixed SNR values
 - varying SNR values ranging from 0.5 to 10

⇒ Use of 400 logarithmically spaced values of \(h \)
Performance metrics

■ Basic performance metrics:

- True Positive TP → detection of a change when there is really one
- True Negative TN → no detection of a change when there is not
- False Positive FP → detection of a change when there is not
- False Negative FN → no detection of a change when there is really one

■ Computation of performance rates:

True Positive Rate TPR

\[TPR = \frac{TP}{TP + FN} \]

False Positive Rate FPR

\[FPR = \frac{FP}{TN + FP} \]

Precision \(P_R \)

\[P_R = \frac{TP}{TP + FP} \]
Performance metrics

- **Receiver Operating Characteristics (ROC):**
 Plot of the TPR versus the FPR for varying values of h

$$\lim_{h \to -\infty} TPR = 1, \quad \lim_{h \to -\infty} FPR = 1, \quad \lim_{h \to +\infty} TPR = 0, \quad \lim_{h \to +\infty} FPR = 0$$

- **SNR = 3**
- Uniformly distributed SNR between 0.5 and 10

\Rightarrow CUSUM ROC curve is the closest to the “optimal” point (FPR=0; TPR=1)
Performance metrics

- **Area Under the Curve (AUC):**
 Numerical integration of the ROC curve

AUC values computed for the three considered detection algorithms

<table>
<thead>
<tr>
<th></th>
<th>Effective Residual</th>
<th>CUSUM</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR = 0.5</td>
<td>0.51</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>SNR = 3</td>
<td>0.75</td>
<td>0.89</td>
<td>0.87</td>
</tr>
<tr>
<td>SNR = 6</td>
<td>0.96</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>variable SNR</td>
<td>0.85</td>
<td>0.91</td>
<td>0.89</td>
</tr>
</tbody>
</table>

⇒ CUSUM: best detection ability

SNR-AUC profile of the Effective Residual, CUSUM and BIC algorithms.
Performance metrics

- **F-Measure** (F_M) harmonic mean of P_R and TPR

\[
F_M = \left(\frac{P_R^{-1} + TPR^{-1}}{2} \right)^{-1} = 2 \times \frac{P_R \times TPR}{P_R + TPR}
\]

- F-measure (F_M) depending on threshold values h of each detector:

 - For small values of h, $P_R = 1/2$ and $TPR = 1$, so $F_M = 2/3$.
 - For large values of h, $TPR = 0$, so $F_M = 0$.
 - For the three detectors, the maximum F_M score is reached for a specific threshold value which is the optimal one.

SNR = 3

Uniformly distributed SNR between 0.5 and 10
Practical case study

- Realization of a controlled consumption scenario using our own measurement system
- Measured current $i[k]$ and voltage $v[k]$ sampled at $F_s = 1.2 \text{ kHz}$
Application of the detectors

- Active power signal \(P[n] = \frac{1}{M} \sum_{k=n-M+1}^{n} v[k]i[k] \), with \(M = \frac{F_s}{F} \)

- For each detector, \(h \) is set to allow the detection of the lowest \(\Delta P = (P[n] - P[n-1]) \) (low-energy lamp switch-on)

- Power time profile and detection results of each algorithm:
Detection results 1/2

Threshold values h and number of TP, FP and P_R of the three considered detection algorithms applied to the active power signal.

<table>
<thead>
<tr>
<th></th>
<th>Effective Residual</th>
<th>CUSUM</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>31.0</td>
<td>850.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Number of detected events</td>
<td>32</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>TP</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>FP</td>
<td>25</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>P_R</td>
<td>21.3%</td>
<td>87.5%</td>
<td>21.2%</td>
</tr>
</tbody>
</table>

The CUSUM algorithm appears to be the most effective with a high P_R and a small number of false positive.
Detection results 2/2

- Relatively large number of detected events for the Effective Residual and the BIC algorithms
 - Noisy steady-states leading to false positive F_P and inaccurate detections.
- Zoom overview of the active power signal drawn by the iron switch on:
1 Introduction
2 Abrupt change detection
3 Statistical assessment
4 Experimental Results
5 Conclusion and prospectives
- Conclusion
- Prospectives
Conclusion

- Event-based NILM approach

- Study of 3 detectors: **Effective Residual**, **CUSUM** and **BIC**

- Test bench for the **statistical assessment** of the detectors under the same conditions

- Definition of **metrics** to judge the detectors performances

- **Practical case study**: application of the detectors to a controlled HEAs consumption scenario.
Prospectives

- Threshold setup from the Probability Density Function of the decision functions
- Extension to multidimensional signals to make a decision from several features
Thank you for your attention.